Exposés à venir
Benoît Daniel (IÉCL) -- titre à venir
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 28 novembre 2024 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Résumé :Un crible minorant effectif pour les entiers friables
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 28 novembre 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Adrien Mounier (Aix-Marseille Université) Résumé :Soient $\mathcal{A}$ un ensemble fini d’entiers naturels non-nuls et $y \geq 1$. Nous donnons une minoration effective du cardinal de l’ensemble $\{n\in\mathcal{A} ; p|n \Rightarrow p \leq y\}$ sous la condition d’une bonne connaissance du niveau de répartition de l’ensemble $\mathcal{A}$. Quelques conséquences seront ensuite abordées, dont une application aux valeurs friables de polynômes ou de formes binaires à coefficients entiers, puis une application aux entiers friables voisins.
Journée à l'honneur de David Vogan
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 5 décembre 2024 00:00-23:59 Lieu : Oratrice ou orateur : Résumé :Une version effective du théorème des nombres premiers de Lu
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 5 décembre 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Vincent Gozé (Université du Littoral Côte d'Opale) Résumé :Soit $\pi(x)$ le nombre de nombres premiers dans l’intervalle $[1,x]$. Nous savons depuis Euclide que $\pi(x)$ tend vers l’infini, mais à quelle vitesse ? La réponse à cette question fut obtenue pour la première fois en 1896 par Jacques Hadamard et Charles-Jean de la Vallée Poussin qui démontrèrent, de manière indépendante, le théorème des nombres premiers: \[\pi(x)\sim \frac{x}{\log x}\quad(x\to \infty).\]
La démonstration de Hadamard et La Vallée Poussin utilise principalement les propriétés de la fonction zêta de Riemann et donc l’analyse complexe. Ce n’est qu’en 1949 qu’Erdős et Selberg publièrent indépendamment la première démonstration élémentaire (utilisant uniquement l’analyse réelle) du théorème des nombres premiers. Dans cet exposé, nous présenterons le développement historique des démonstrations élémentaires du théorème des nombres premiers puis nous donnerons une version effective du théorème des nombres premiers de Lu qui, à ce jour, donne le meilleur terme d’erreur en utilisant des méthodes élémentaires.
Pause pour arbre de Noël GNC à Orléans
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 12 décembre 2024 14:15-15:15 Lieu : Oratrice ou orateur : Résumé :Sur une généralisation des puissances d'un entier (``powered numbers''). Application à un problème additif.
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 12 décembre 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Olivier Robert (Institut Camille Jordan) Résumé :La notion de fonction puissance d’un nombre entier, introduite par Mazur (2000) fait intervenir le noyau (ou radical) d’un entier. Cette fonction lui permet de définir une généralisation des puissances (« powered numbers »). Après avoir rappelé des résultats récents sur le noyau d’un entier, nous présenterons des résultats nouveaux sur la fonction de répartition des puissances généralisées, ainsi que sur un problème additif concernant la représentation d’un entier comme somme de puissances généralisées. Ce travail a été réalisé en collaboration avec J. Brüdern.
Pierre Bieliavksy -- titre à venir
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 13 février 2025 14:14-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Pierre Bieliavsky (Louvain-la-Neuve) Résumé :Archives
Quantification des champs à la Hopf-Fock
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 11 juin 2020 15:30-16:30 Lieu : Oratrice ou orateur : Alessandra Frabetti Résumé :La quantification par déformation d’une théorie de champs se fait en deux étapes, d’abord pour une théorie libre à partir de la structure de Poisson donnée par le crochet de Peierls associé au propagateur de Wightmann, ensuite pour la théorie en intéraction avec une ultérieur déformation associée au propagateur de Feynman, qui produit des ambiguités gérées par le groupe de renormalisation. Chaque étape de ce programme nécessite l’étude des fonctionnelles pouvant être déformées, compliquée par l’apparition de distributions singulières avec fronts d’ondes plus au moins adaptés aux opérations réquises. Les travaux en pAQFT dans les années 1990 et 2000 décrivent ces étapes de façon rigoureuse et complète (cf. K. Fredenhagen, M. Duetsch, R. Brunetti, S. Hollands, R.M. Wald, K. Rejzner, C. Brouder, N.V. Dang, Y. Dabrowski, etc). Avec C. Brouder, B. Fauser et R. Oeckl, nous avons montré en 2004 que si on se restreint à des fonctionnelles régulières (et on oublie donc les problèmes analytiques), ces déformations coincident avec celles purement algébriques d’une structure de Hopf-comodule sur les fonctionnels, obtenues à l’aide de deux couplages de Laplace définis par les propagateurs (et qui remplecent donc les crochets de Poisson dans le cadre des déformations d’algèbres de Hopf à la Drinfeld ou à la Majid). Les premiers résultats étaient complètement formels, et ils ont été précisés au sens géometrique par R. Borcherds en 2011, et complétés au sens algébrique et analytique par E. Herscovich en 2017. Dans cet exposé, je présente les grandes lignes de ce point de vue.
The Chern character of Fredholm modules over dg Algebras and localisation on loop spaces
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 28 mai 2020 14:15-15:45 Lieu : Oratrice ou orateur : Batu Gueneysu Résumé :Résumé
An image characterization for the Poisson transform on homogeneous line bundles over noncompact Grassmann manifolds
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 9 avril 2020 14:15-15:15 Lieu : Oratrice ou orateur : Abdelhamid Boussejra Résumé :Résumé
Recent results on homotopy co-moments in multisymplectic geometry
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 2 avril 2020 14:15-15:15 Lieu : Oratrice ou orateur : Leonid Ryvkin Résumé :Résumé
Reporté
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 26 mars 2020 14:15-15:15 Lieu : Oratrice ou orateur : Claire Debord Résumé :Résumé
An image characterization for the Poisson transform on homogeneous line bundles over Noncompact Complex Grassmann Manifolds. Lien externe[Résumé] - Reporté
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 19 mars 2020 15:30-16:30 Lieu : Oratrice ou orateur : Abdelhamid Boussejra Résumé :Let (X=G/K) be a noncompact complex Grassmann manifold of rank (r). Let (tau_l) be a character of (K), and (Ktimes_M{C}) the homogeneous line bundle associated with (tau_{l_{mid M}}). We give an image characterization for the Poisson transform (P_{lambda,l}) of (L^2)-sections of (Ktimes_M{C}). More precisely, for real and regular spectral parameter (lambda) in (mathfrak{a}^ast) we prove that (P_{lambda,l}) is an isomorphism from (L^2(Ktimes_M{C})) onto a space of joint eigensections (F) of the algebra of (G)-invariant differential operators on (Gtimes_K{C}) that satisfy (displaystylesup_{R>1}frac{1}{R^r}int_{B(R)}mid F(g)mid^2, {rm d}g<infty.) This generalizes a conjecture by Strichartz which corresponds to (tau_l) trivial.\
Hyperkähler Lie groups with abelian complex structures[Résumé] - Reporté
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 19 mars 2020 14:15-15:15 Lieu : Oratrice ou orateur : Ignacio Bajo Résumé :We consider Lie groups $G$ endowed with a pair of anticommuting left-invariant abelian complex structures $(J_1,J_2)$ and a left-invariant, possibly indefinite, metric $g$ such that $(G,J_1,J_2,g)$ results to be a hyperkähler manifold. We study the algebraic structure and geometric properties of such Lie groups with an abelian hyperkähler structure. It results that such groups are always 3-step nilpotent and there is a correspondence between the associated hyperkähler Lie algebras and certain triples $(V,Omega, J_s)$ defined for a complex (associative) commutative algebra $V$ such that $V^3={0}$. This correspondence allows us to compute the Riemannian curvature of the pseudo-metric, describe the holonomy algebra and show that hyperkähler Lie groups with abelian complex structures are complete and locally symmetric. This clearly implies that every simply-connected Lie group endowed with an abelian hyperkähler structure is actually a symmetric space. In constrast to the definite case, there exist non-flat examples of abelian hyperkähler Lie groups; they cannot be 2-step nilpotent and their dimension is always equal to or greater than 16. Moreover, using the triple description, we classify up to Lie algebra isomorphism all Lie algebras $g$ admitting an abelian hyperkähler structure for $dimgle 12$. Some remarks on their classification up to triholomorphic symplectomorphism will also be mentioned. [BS_HK] I. Bajo, E. Sanmart'{i}n, « Indefinite hyperkähler metrics on Lie groups with abelian complex structures », 2019, to appear in Transformation Groups.
Groupoïdes et $K$-théorie
Catégorie d'évènement : Groupe de travail Géométrie non commutative Date/heure : 12 mars 2020 15:00-17:00 Lieu : Oratrice ou orateur : Fabien Bessière Résumé :Small discrepancy sequences over the function fields
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 12 mars 2020 14:30-15:30 Lieu : Oratrice ou orateur : Oleksiy Klurman Résumé :Résumé
Les 12 et 13 mars 2020.
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 12 mars 2020 08:00-18:00 Lieu : Oratrice ou orateur : Journées SL_2 R (en l'honneur du 80e anniversaire de Jacques Faraut) Résumé :www.iecl.univ-lorraine.fr/~Khalid.Koufany/SL2R2020/programme.html