Séminaires

Exposés à venir

A venir

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 6 novembre 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Habibur Rahaman (IISER Kolkata, Inde) Résumé :

A venir

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 13 novembre 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Jonathan Rotgé (IECL et Université d’Aix-Marseille) Résumé :

A venir

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 20 novembre 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Rashi Lunia (Max Planck Institute for Mathematics, Bonn) Résumé :

A venir

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 27 novembre 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Kunjakanan Nath (IECL) Résumé :

A venir

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 4 décembre 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Yu-Chen Sun (University of Bristol) Résumé :

Guendalina Palmirotta — titre à venir

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 8 janvier 2026 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Guendalina Palmirotta Résumé :

A venir

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 15 janvier 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Cedric Pilatte (Oxford) Résumé :

A venir

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 5 mars 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Kilian Lebreton (IECL) Résumé :

A venir

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 26 mars 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Michel Balazard (Institut de Mathématiques de Marseille) Résumé :

Archives

Dirac index and associated cycles of Harish-Chandra modules

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 5 novembre 2020 14:15-15:30 Lieu : Oratrice ou orateur : Pavle Pandzic Résumé :

We show how, for certain Harish-Chandra modules, the polynomial giving the dimension of the Dirac index of the corresponding coherent family can be expressed as an integer linear combination of the coefficients of the characteristic cycle. This is joint work with S.Mehdi, D.Vogan and R.Zierau.


On the classification of completely multiplicative automatic sequences

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 15 octobre 2020 15:00-16:00 Lieu : Oratrice ou orateur : Shuo Li Résumé :

https://dev-iecl.univ-lorraine.fr/Les-Seminaires/Theorie-Des-Nombres/wolfcms/seminaire.html


Irregularities of Dirichlet L-functions and a Chebyshev-type bias for zeros

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 8 octobre 2020 15:00-16:00 Lieu : Oratrice ou orateur : Micah Milinovich Résumé :

https://dev-iecl.univ-lorraine.fr/Les-Seminaires/Theorie-Des-Nombres/wolfcms/seminaire.html


Transfert des caractères dans la correspondance de Howe via l'intégrale de Cauchy-Harish-Chandra

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 8 octobre 2020 14:15-15:15 Lieu : Oratrice ou orateur : Allan Merino Résumé :

Pour toute paire duale réductive et irréductible (G, G’) dans Sp(W), R. Howe a démontré qu’il existait un isomorphisme entre les espaces R(G) et R(G’), o๠R(G) est l’ensemble des classes d’equivalences de representations irréductibles admissibles de tilde{G} pouvant se réaliser comme un quotient de la représentation métaplectique. Dans les années 2000, T. Przebinda a introduit l’intégrale de Cauchy-Harish-Chandra et conjecturé que le transfert des caractères dans la correspondance devrait être obtenu via cette intégrale. Si l’un des membres est compact ou si la paire duale (G, G’) est dans le « rang stable”, cette conjecture a été prouvée. Dans mon exposé, je vais m’intéresser au cas o๠G et G’ sont deux groupes unitaires de même rang, et prouver cette conjecture dans le cas o๠la representation de tilde{G} considérée est une série discrète.


Exposes le jeudi après-midi, et vendredi toute la journée

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 10 septembre 2020 14:00-18:00 Lieu : Oratrice ou orateur : Workshop on multisymplectic geometry Résumé :

Le lien pour la transmission Visio s’obtient par inscription au site du « Lien externe »


Analyse sur les espaces singuliers et théorie de l'indice

Catégorie d’évènement : Analyse et théorie des nombres Date/heure : 26 juin 2020 14:30-15:30 Lieu : Oratrice ou orateur : Rémi Côme Résumé :

Quantification des champs à  la Hopf-Fock

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 11 juin 2020 15:30-16:30 Lieu : Oratrice ou orateur : Alessandra Frabetti Résumé :

La quantification par déformation d’une théorie de champs se fait en deux étapes, d’abord pour une théorie libre à  partir de la structure de Poisson donnée par le crochet de Peierls associé au propagateur de Wightmann, ensuite pour la théorie en intéraction avec une ultérieur déformation associée au propagateur de Feynman, qui produit des ambiguités gérées par le groupe de renormalisation. Chaque étape de ce programme nécessite l’étude des fonctionnelles pouvant être déformées, compliquée par l’apparition de distributions singulières avec fronts d’ondes plus au moins adaptés aux opérations réquises. Les travaux en pAQFT dans les années 1990 et 2000 décrivent ces étapes de façon rigoureuse et complète (cf. K. Fredenhagen, M. Duetsch, R. Brunetti, S. Hollands, R.M. Wald, K. Rejzner, C. Brouder, N.V. Dang, Y. Dabrowski, etc). Avec C. Brouder, B. Fauser et R. Oeckl, nous avons montré en 2004 que si on se restreint à  des fonctionnelles régulières (et on oublie donc les problèmes analytiques), ces déformations coincident avec celles purement algébriques d’une structure de Hopf-comodule sur les fonctionnels, obtenues à  l’aide de deux couplages de Laplace définis par les propagateurs (et qui remplecent donc les crochets de Poisson dans le cadre des déformations d’algèbres de Hopf à  la Drinfeld ou à  la Majid). Les premiers résultats étaient complètement formels, et ils ont été précisés au sens géometrique par R. Borcherds en 2011, et complétés au sens algébrique et analytique par E. Herscovich en 2017. Dans cet exposé, je présente les grandes lignes de ce point de vue.


The Chern character of Fredholm modules over dg Algebras and localisation on loop spaces

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 28 mai 2020 14:15-15:45 Lieu : Oratrice ou orateur : Batu Gueneysu Résumé :

Résumé


An image characterization for the Poisson transform on homogeneous line bundles over noncompact Grassmann manifolds

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 9 avril 2020 14:15-15:15 Lieu : Oratrice ou orateur : Abdelhamid Boussejra Résumé :

Résumé


Recent results on homotopy co-moments in multisymplectic geometry

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 2 avril 2020 14:15-15:15 Lieu : Oratrice ou orateur : Leonid Ryvkin Résumé :

Résumé