Séminaires

Exposés à venir

Résolution du problème d'approximation par dilatations de Erdős

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 3 avril 2025 14:15-15:15 Lieu : Salle Döblin Oratrice ou orateur : Youness Lamzouri (IECL) Résumé :

Motivé par ses travaux et ceux de Behrend dans les années 30 concernant les ensembles primitifs d’entiers, Erdős conjectura en 1948 que si $\mathcal{A}$ est un ensemble dénombrable de réels $>1$, tel que $\limsup_{x\to +\infty} \frac{1}{\log x}\sum_{\alpha\leq x, \alpha\in \mathcal{A}}\frac{1}{\alpha} >0$, alors pour tout $\varepsilon>0$, il existe une infinité de triplets $(\alpha, \beta, n)\in \mathcal{A}^2\times \mathbb{N}$ tels que $\alpha\neq \beta$ et $|n\alpha-\beta|<\varepsilon.$ Très peu de temps avant sa mort en 1996, il avait offert 500$ pour la résolution de ce problème de nature diophantienne.

Dans cet exposé, je présenterai un travail récent, en collaboration avec Dimitris Koukoulopoulos et Jared Lichtman, où l’on démontre cette conjecture.


Grands ensembles évitant certaines configurations

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 24 avril 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Alexandre Bailleul (ENS Paris-Saclay) Résumé :

En se laissant guider par l’exemple des ensembles de Sidon (ensembles de nombres dont les sommes de deux éléments sont uniques, très étudiés en combinatoire additive), je présenterai des résultats récents, en collaboration avec R. Riblet, où des techniques de théorie des ensembles permettent de construire des ensembles « grands » en certains sens (cardinalité, mesure ou dimension) tout en étant « épars » car évitant des configurations prescrites (pas de relation linéaire, ou ne contenant pas de parallélogramme, etc.). Des questions subtiles en lien avec l’axiome du choix seront évoquées.


Pseudogroups and geometric structures

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 15 mai 2025 14:15-15:15 Lieu : Salle de réunion Metz (ARC-027) Oratrice ou orateur : Francesco Cattafi (Würzburg) Résumé :
The space of (local) symmetries of a given geometric structure has the natural structure of a Lie (pseudo)group. Conversely, geometric structures admitting a local model can be described via the pseudogroup of symmetries of such local model.

This philosophy can be made precise at various levels of generality (depending on the definition of « geometric structure ») and using different tools/methods. In this talk I will present some aspects of a new framework, which includes previous formalisms (e.g. G-structures or Cartan geometries) and allows us to prove integrability theorems.

A main novelty of this point of view consists of the fact that it uncovers the (beautiful!) hidden structures behind Lie pseudogroups and geometric structures. Indeed, the relevant objects which make this approach work are Lie groupoids endowed with a multiplicative « PDE-structure », their principal actions, and the related Morita theory. Poisson geometry provides the guiding principle to understand those objects, which are directly inspired from, respectively, symplectic groupoids, principal Hamiltonian bundles, and symplectic Morita equivalence.

This is based on a forthcoming book written jointly with Luca Accornero, Marius Crainic and María Amelia Salazar.


A venir

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 15 mai 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Athanasios Sourmelidis (CNRS, Lille) Résumé :

Antonio Miti – titre à venir

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 5 juin 2025 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Antonio Miti (Rome) Résumé :

Archives

On computing $L’/L(1,\chi)$ and related problems

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 11 mars 2021 14:30-15:30 Lieu : Salle de séminaire de Théorie des Nombres virtuelle Oratrice ou orateur : Alessandro Languasco Résumé :

We first describe an efficient algorithm to compute
$L’/L(1,\chi)$, where $\chi$ is a non-principal Dirichlet character
mod q, and q is an odd prime. We then discuss
some results on the distribution of
$m_q := \min_{\chi\ne \chi_0} \vert L’/L(1,\chi) \vert $
and about the Euler-Kronecker constants for cyclotomic fields.


Titre à  préciser

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 4 mars 2021 14:15-15:15 Lieu : Oratrice ou orateur : Samuel Petite Résumé :

Résumé


The distribution of random polynomials with multiplicative coefficients

Catégorie d’évènement : Analyse et théorie des nombres Date/heure : 18 février 2021 14:30-15:30 Lieu : Oratrice ou orateur : Brad Rodgers Résumé :

A classic paper of Salem and Zygmund investigates the distribution of trigonometric polynomials whose coefficients are chosen randomly (say +1 or -1 with equal probability) and independently. Salem and Zygmund characterized the typical distribution of such polynomials (gaussian) and the typical magnitude of their sup-norms (a degree N polynomial typically has sup-norm of size $\sqrt{N \log N}$ for large N). In this talk we will explore what happens when a weak dependence is introduced between coefficients of the polynomials; namely we consider polynomials with coefficients given by random multiplicative functions. We consider analogues of Salem and Zygmund’s results, exploring similarities and some differences.

Special attention will be given to a beautiful point-counting argument introduced by Vaughan and Wooley which ends up being useful.

This is joint work with Jacques Benatar and Alon Nishry.


Équations de Painlevé non-commutatives et applications

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 18 février 2021 14:15-15:15 Lieu : Oratrice ou orateur : Mattia Cafasso (Université d’Angers) Résumé :

Les équations de Painlevé, tout comme beaucoup d’autres équations intégrables, admettent des généralisations au cadre non-commutatif, où la variable dépendante est remplacée, par exemple, par une matrice ou un opérateur. Cette extension au cadre non-commutatif a joué un rôle centrale dans ma collaboration avec Bertola et Roubtsov sur l’étude des systèmes de Calogero-Painlevé et, plus récemment, dans ma collaboration avec Bothner et Tarricone sur les équations de Painlevé de type intégrodifférentiel et leur applications aux probabilités intégrables. Dans mon séminaire, j’essaierai d’illustrer les résultats que nous avons obtenus dans les deux cas, en soulignant leur points communs.


Équations de Painlevé non-commutatives et applications

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 18 février 2021 14:15-15:15 Lieu : Oratrice ou orateur : Mattia Cafasso Résumé :

Les équations de Painlevé, tout comme beaucoup d’autres équations intégrables, admettent des généralisations au cadre non-commutatif, o๠la variable dépendante est remplacée, par exemple, par une matrice ou un opérateur. Cette extension au cadre non-commutatif a joué un rôle centrale dans ma collaboration avec Bertola et Roubtsov sur l’étude des systèmes de Calogero-Painlevé et, plus récemment, dans ma collaboration avec Bothner et Tarricone sur les équations de Painlevé de type intégrodifférentiel et leur applications aux probabilités intégrables. Dans mon séminaire, j’essaierai d’illustrer les résultats que nous avons obtenus dans les deux cas, en soulignant leur points communs.


Théorie de l'indice et analyse microlocale sur les groupoïdes

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 11 février 2021 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Jean-Marie Lescure (Université Clermont Auvergne) Résumé :

Dans cet exposé nous aborderons deux aspects de l’utilité des groupoïdes de Lie. Le premier aspect concerne la théorie de l’indice des espaces stratifiés. Nous expliquerons comment les ingrédients du théorème d’Atiyah-Singer, ainsi que sa preuve, peuvent être reformulés à l’aide de groupoïdes, puis nous verrons comment étendre cette approche aux espaces stratifiés. Le second aspect concerne l’analyse microlocale sur les groupoïdes. Nous décrirons une généralisation des opérateurs pseudodifférentiels sur les groupoïdes de Lie : les opérateurs intégraux de Fourier, et nous mettrons en évidence le rôle fondamental joué par le groupoïde cotangent symplectique de Weinstein. Enfin, nous verrons que les solutions fondamentales des équations d’évolution appartiennent, à des régularisants près, à ce calcul intégral de Fourier.


Théorie de l'indice et analyse microlocale sur les groupoïdes

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 11 février 2021 14:15-15:15 Lieu : Oratrice ou orateur : Jean-Marie Lescure Résumé :

Dans cet exposé nous aborderons deux aspects de l’utilité des groupoïdes de Lie. Le premier aspect concerne la théorie de l’indice des espaces stratifiés. Nous expliquerons comment les ingrédients du théorème d’Atiyah-Singer, ainsi que sa preuve, peuvent être reformulés à  l’aide de groupoïdes, puis nous verrons comment étendre cette approche aux espaces stratifiés. Le second aspect concerne l’analyse microlocale sur les groupoïdes. Nous décrirons une généralisation des opérateurs pseudodifférentiels sur les groupoïdes de Lie : les opérateurs intégraux de Fourier, et nous mettrons en évidence le rôle fondamental joué par le groupoïde cotangent symplectique de Weinstein. Enfin, nous verrons que les solutions fondamentales des équations d’évolution appartiennent, à  des régularisants près, à  ce calcul intégral de Fourier.


Généralisations du théorème de Rockland

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 4 février 2021 15:15-16:30 Lieu : Oratrice ou orateur : Robert Yuncken Résumé :

Cet exposé concerne la relation entre l’analyse des opérateurs différentiels et les représentations des groupes de Lie nilpotent. La condition de Rockland généralise l’ellipticité pour les opérateurs différentiels sur les variétés qui à  l’échelle infinitésimale ressemblent à  un groupe de Lie nilpotent. C’est le cas pour la géométrie de contacte et les géométries paraboliques, par exemple. Un résultat de Melin, jamais publié, montre que de tels opérateurs vérifient les propriétés d’hypoellipticité et de Fredholm sur une variété compact. Une nouvelle preuve avec le groupoïde d’holonomie d’un feuilletage singulier nous permet de généraliser en même temps le théorème des sommes-de-carrés de Hörmander et obtenir des nouvelles classes d’opérateurs hypoelliptiques. (Travaux en commun avec I. Androulidakis, O. Mohsen et E. van Erp.)


Opérateurs de Dirac non-cubiques pour les modules de dimension finie

Catégorie d’évènement : Analyse et théorie des nombres Date/heure : 4 février 2021 13:30-14:30 Lieu : Soutenance sur YouTube Oratrice ou orateur : Spyridon Afentoulidis-Almpanis Résumé :

Integration of Lie n-algebroids, or, how to solve Maurer-Cartan equations

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 28 janvier 2021 14:15-15:15 Lieu : Oratrice ou orateur : Pavol Severa Résumé :

I will review the strategy of integration of Lie n-algebroids to Lie n-groupoids using the « path method » coming from Sullivan’s Rational Homotopy Theory. I will then explain how to solve the main analytic problem of this strategy, which is to show that the spaces of solutions of generalized Maurer-Cartan equations are actually manifolds. These results can be used to show that a « local integration » of Lie algebroids indeed produces local Lie n-groupods. Based on a joint work with Michal Å iraň.