Exposés à venir
Résolution du problème d'approximation par dilatations de Erdős
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 3 avril 2025 14:15-15:15 Lieu : Salle Döblin Oratrice ou orateur : Youness Lamzouri (IECL) Résumé :Motivé par ses travaux et ceux de Behrend dans les années 30 concernant les ensembles primitifs d’entiers, Erdős conjectura en 1948 que si $\mathcal{A}$ est un ensemble dénombrable de réels $>1$, tel que $\limsup_{x\to +\infty} \frac{1}{\log x}\sum_{\alpha\leq x, \alpha\in \mathcal{A}}\frac{1}{\alpha} >0$, alors pour tout $\varepsilon>0$, il existe une infinité de triplets $(\alpha, \beta, n)\in \mathcal{A}^2\times \mathbb{N}$ tels que $\alpha\neq \beta$ et $|n\alpha-\beta|<\varepsilon.$ Très peu de temps avant sa mort en 1996, il avait offert 500$ pour la résolution de ce problème de nature diophantienne.
Dans cet exposé, je présenterai un travail récent, en collaboration avec Dimitris Koukoulopoulos et Jared Lichtman, où l’on démontre cette conjecture.
Grands ensembles évitant certaines configurations
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 24 avril 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Alexandre Bailleul (ENS Paris-Saclay) Résumé :En se laissant guider par l’exemple des ensembles de Sidon (ensembles de nombres dont les sommes de deux éléments sont uniques, très étudiés en combinatoire additive), je présenterai des résultats récents, en collaboration avec R. Riblet, où des techniques de théorie des ensembles permettent de construire des ensembles « grands » en certains sens (cardinalité, mesure ou dimension) tout en étant « épars » car évitant des configurations prescrites (pas de relation linéaire, ou ne contenant pas de parallélogramme, etc.). Des questions subtiles en lien avec l’axiome du choix seront évoquées.
Pseudogroups and geometric structures
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 15 mai 2025 14:15-15:15 Lieu : Salle de réunion Metz (ARC-027) Oratrice ou orateur : Francesco Cattafi (Würzburg) Résumé :This philosophy can be made precise at various levels of generality (depending on the definition of « geometric structure ») and using different tools/methods. In this talk I will present some aspects of a new framework, which includes previous formalisms (e.g. G-structures or Cartan geometries) and allows us to prove integrability theorems.
A main novelty of this point of view consists of the fact that it uncovers the (beautiful!) hidden structures behind Lie pseudogroups and geometric structures. Indeed, the relevant objects which make this approach work are Lie groupoids endowed with a multiplicative « PDE-structure », their principal actions, and the related Morita theory. Poisson geometry provides the guiding principle to understand those objects, which are directly inspired from, respectively, symplectic groupoids, principal Hamiltonian bundles, and symplectic Morita equivalence.
This is based on a forthcoming book written jointly with Luca Accornero, Marius Crainic and María Amelia Salazar.
A venir
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 15 mai 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Athanasios Sourmelidis (CNRS, Lille) Résumé :Antonio Miti – titre à venir
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 5 juin 2025 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Antonio Miti (Rome) Résumé :Archives
Théorie de l'indice pour les opérateurs longitudinaux G-transversalement elliptiques
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 30 janvier 2020 14:15-15:15 Lieu : Oratrice ou orateur : Alexandre Baldare Résumé :Le but de cet exposé est d’introduire une classe indice pour les opérateurs longitudinaux G-transversalement elliptiques. Je commencerai par rappeler la définition de l’indice d’un opérateur elliptique G-invariant sur une variété compacte et le théorème de l’indice d’Atiyah-Singer. Ensuite j’introduirai la définition de la classe indice pour un opérateur G-transversalement elliptique introduite par Atiyah et celle pour les familles d’opérateurs G-transversalement elliptiques introduite dans ma thèse. Je discuterai dans le même temps les différents axiomes vérifiés par ces classes indices. Je terminerai avec les derniers résultats obtenus en collaboration avec Moulay Benameur, dans le cadre des feuilletages.
An introduction to quantum groups and quantum symmetries
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 23 janvier 2020 14:15-15:15 Lieu : Oratrice ou orateur : Moritz Weber Résumé :Quantum groups have been defined in the analytical/topological setting by Woronowicz in the 1980s. In this talk, we will give a brief introduction to these objects and see how they can be used for describing quantum symmetries. We will discuss some examples arising from so called « easy » quantum groups or quantum automorphism groups of finite graphs. Some ongoing research project on de Finetti type theorems with Isabelle Baraquin (Metz) will be mentioned as well.
Scars for arithmetic point scatterers on the torus
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 16 janvier 2020 14:30-15:30 Lieu : Oratrice ou orateur : Steve Lester Résumé :Résumé
Maximal determinants of Schrödinger operators on finite intervals
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 9 janvier 2020 14:15-15:15 Lieu : Oratrice ou orateur : Clara Aldana Résumé :In this talk I will present the problem of finding extremal potentials for the functional determinant of a one-dimensional Schrödinger operator defined on a bounded interval with Dirichlet boundary conditions. We consider potentials in a fixed $L^q$ space with $qgeq 1$. Functional determinants of Sturm-Liouville operators with smooth potentials or with potentials with prescribed singularities have been widely studied, I will present a short review of these results and will explain how to extend the definition of the functional determinant to potentials in $L^q$. The maximization problem turns out to be equivalent to a problem in optimal control. I will explain how we obtain existence and uniqueness of the maximizers. The results presented in the talk are join work with J-B. Caillau (UCDA, CNRS, Inria, LJAD) and P. Freitas (Lisboa).
Low pseudomoments of the Riemann zeta function and its powers
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 19 décembre 2019 14:30-15:30 Lieu : Oratrice ou orateur : Maxim Gerspach Résumé :Résumé
Fonctions arithmétiques multiplicativement monotones
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 12 décembre 2019 15:30-16:30 Lieu : Oratrice ou orateur : Michel Balazard Résumé :Résumé
Thick morphisms, the action in classical mechanics and spinors
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 12 décembre 2019 14:30-15:30 Lieu : Oratrice ou orateur : Hovhannes Khuvaderdian Résumé :For an arbitrary morphism of (super)manifolds, the pull-back is a linear map of the space of functions. In 2014 Th.Voronov have introduced thick morphisms of (super)manifolds which define a generally non-linear pull-back of functions. This construction was introduced as an adequate tool to describe L-infinity morphisms of algebras of functions provided with the structure of a homotopy Poisson algebra. It turns out that if you go down from `heaven to earth’, and consider usual (not super!) manifolds, then we come to constructions which have natural interpretation in classical and quantum mechanics. In particular in this case the geometrical object which defines the thick diffeomorphism becomes an action of classsical mecanics, and pull-back of the thick diffeomorphism with a quadratic action give a spinor representation. I will define a thick morphism and will tell shortly about their application in homotopy Poisson algebras. Then I will discuss the relation of thick morphisms with notions such as the action in classical mechanics and spinors. The talk is based on the work: « Thick morphisms of supermanifolds, quantum mechanics and spinor representation’, J.Geom. and Phys., 2019, article Number: 103540, https://doi.org/10.1016/ j.geomphys.2019.103540, arXiv:1909.00290 Authors: Hovhannes Khudaverdian, Theodore Voronov
Pseudorandom binary sequences: Quality measures and constructions
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 5 décembre 2019 14:30-15:30 Lieu : Oratrice ou orateur : Arne Winterhof Résumé :https://dev-iecl.univ-lorraine.fr/Les-Seminaires/Theorie-Des-Nombres/wolfcms/seminaire.html
Analogy with the Lagrange spectrum for geometric progressions
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 28 novembre 2019 14:30-15:30 Lieu : Oratrice ou orateur : Hajime Kaneko Résumé :Résumé
Existence and non-existence of minimizers for a Poincaré-Sobolev inequality.
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 28 novembre 2019 14:15-15:15 Lieu : Oratrice ou orateur : Hanne van den Bosch Résumé :We study a specific Poincaré-Sobolev inequality in bounded domains, that has recently been used to prove a semi-classical bound on the kinetic energy of fermionic many-body states. The corresponding inequality in the entire space is precisely scale invariant and this gives rise to an interesting phenomenon. Optimizers exist for some (most ?) domains and do not exist for some other domains, at least for the isosceles triangle in two dimensions. In this talk, I will discuss bounds on the constant in the inequality and the proofs of existence and non-existence. This is joint work with Rafael Benguria and Cristà³bal Vallejos (PUC, Chile).