Séminaires

Exposés à venir

Pseudogroups and geometric structures

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 15 mai 2025 14:15-15:15 Lieu : Salle de réunion Metz (ARC-027) Oratrice ou orateur : Francesco Cattafi (Würzburg) Résumé :
The space of (local) symmetries of a given geometric structure has the natural structure of a Lie (pseudo)group. Conversely, geometric structures admitting a local model can be described via the pseudogroup of symmetries of such local model.

This philosophy can be made precise at various levels of generality (depending on the definition of « geometric structure ») and using different tools/methods. In this talk I will present some aspects of a new framework, which includes previous formalisms (e.g. G-structures or Cartan geometries) and allows us to prove integrability theorems.

A main novelty of this point of view consists of the fact that it uncovers the (beautiful!) hidden structures behind Lie pseudogroups and geometric structures. Indeed, the relevant objects which make this approach work are Lie groupoids endowed with a multiplicative « PDE-structure », their principal actions, and the related Morita theory. Poisson geometry provides the guiding principle to understand those objects, which are directly inspired from, respectively, symplectic groupoids, principal Hamiltonian bundles, and symplectic Morita equivalence.

This is based on a forthcoming book written jointly with Luca Accornero, Marius Crainic and María Amelia Salazar.


A venir

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 15 mai 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Athanasios Sourmelidis (CNRS, Lille) Résumé :

Antonio Miti – titre à venir

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 5 juin 2025 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Antonio Miti (Rome) Résumé :

Alessandra Frabetti – titre à venir

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 10 juillet 2025 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Alessandra Frabetti Résumé :

Archives

Correspondance de Stratonovich-Weyl pour les orbites massives d'un groupe de Poincaré généralisé

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 6 juin 2019 14:15-15:15 Lieu : Oratrice ou orateur : Benjamin Cahen Résumé :

Sur la complexité de familles d'ensembles pseudo-aléatoires

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 23 mai 2019 14:30-15:30 Lieu : Oratrice ou orateur : Cécile Dartyge Résumé :

https://dev-iecl.univ-lorraine.fr/Les-Seminaires/Theorie-Des-Nombres/wolfcms/seminaire.html


ANNULÉ

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 23 mai 2019 14:15-15:15 Lieu : Oratrice ou orateur : Michail Marias Résumé :

Chemins de Kloosterman de module une puissance d'un nombre premier

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 16 mai 2019 14:30-15:30 Lieu : Oratrice ou orateur : Guillaume Ricotta Résumé :

https://dev-iecl.univ-lorraine.fr/Les-Seminaires/Theorie-Des-Nombres/wolfcms/seminaire.html


Espace coarse, algèbre de Roe et application d'assemblage (suite).

Catégorie d’évènement : Groupe de travail Géométrie non commutative Date/heure : 16 mai 2019 14:15-16:00 Lieu : Oratrice ou orateur : Fabien Bessière Résumé :

En 1982, Baum et Connes ont conjecturé que l’application d’assemblage est un isomorphisme. Dans cet exposé, nous verrons comment construire cette application dans le cas d’un espace coarse. Plus précisément, on fixe un groupe discret G agissant proprement sur un espace coarse X et on définit une application de la K-homologie équivariante à  supports G-compacts de X vers la K-théorie de l’algèbre réduite de G. Nous définirons la notion d’espace coarse ainsi que les algèbres de Roe qui sont des C*-algèbres qui encodent la structure coarse. Nous rappellerons le théorème de Voiculescu et la dualité de Paschke qui sont deux notions indispensables dans la construction de l’application d’assemblage.


Espace coarse, algèbre de Roe et application d'assemblage (suite).

Catégorie d’évènement : Groupe de travail Géométrie non commutative Date/heure : 7 mai 2019 14:15-15:15 Lieu : Oratrice ou orateur : Fabien Bessière Résumé :

En 1982, Baum et Connes ont conjecturé que l’application d’assemblage est un isomorphisme. Dans cet exposé, nous verrons comment construire cette application dans le cas d’un espace coarse. Plus précisément, on fixe un groupe discret G agissant proprement sur un espace coarse X et on définit une application de la K-homologie équivariante à  supports G-compacts de X vers la K-théorie de l’algèbre réduite de G. Nous définirons la notion d’espace coarse ainsi que les algèbres de Roe qui sont des C*-algèbres qui encodent la structure coarse. Nous rappellerons le théorème de Voiculescu et la dualité de Paschke qui sont deux notions indispensables dans la construction de l’application d’assemblage.


La répartition du maximum des sommes partielles de sommes d'exponentielles

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 2 mai 2019 14:30-15:30 Lieu : Oratrice ou orateur : Youness Lamzouri Résumé :

https://dev-iecl.univ-lorraine.fr/Les-Seminaires/Theorie-Des-Nombres/wolfcms/seminaire.html


Espace coarse, algèbre de Roe et application d'assemblage.

Catégorie d’évènement : Groupe de travail Géométrie non commutative Date/heure : 2 mai 2019 14:15-16:00 Lieu : Oratrice ou orateur : Fabien Bessière Résumé :

En 1982, Baum et Connes ont conjecturé que l’application d’assemblage est un isomorphisme. Dans cet exposé, nous verrons comment construire cette application dans le cas d’un espace coarse. Plus précisément, on fixe un groupe discret G agissant proprement sur un espace coarse X et on définit une application de la K-homologie équivariante à  supports G-compacts de X vers la K-théorie de l’algèbre réduite de G. Nous définirons la notion d’espace coarse ainsi que les algèbres de Roe qui sont des C*-algèbres qui encodent la structure coarse. Nous rappellerons le théorème de Voiculescu et la dualité de Paschke qui sont deux notions indispensables dans la construction de l’application d’assemblage.


Réduction des espaces symétriques symplectiques et représentations étales affines

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 25 avril 2019 16:30-17:20 Lieu : Oratrice ou orateur : Yannick Voglaire Résumé :

Immersions isométriques à  courbure moyenne constante

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 25 avril 2019 15:30-16:20 Lieu : Oratrice ou orateur : Benoît Daniel Résumé :

Nous rappellerons certains résultats classiques (Ricci, Calabi, Lawson) concernant l’existence et l’unicité d’immersions isométriques à  courbure moyenne constante d’une surface riemannienne dans une variété riemannienne de dimension 3 à  courbure moyenne constante. Nous nous intéresserons ensuite à  des extensions de ces résultats dans d’autres variétés riemanniennes homogènes de dimension 3.