Exposés à venir
Résolution du problème d'approximation par dilatations de Erdős
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 3 avril 2025 14:15-15:15 Lieu : Salle Döblin Oratrice ou orateur : Youness Lamzouri (IECL) Résumé :Motivé par ses travaux et ceux de Behrend dans les années 30 concernant les ensembles primitifs d’entiers, Erdős conjectura en 1948 que si $\mathcal{A}$ est un ensemble dénombrable de réels $>1$, tel que $\limsup_{x\to +\infty} \frac{1}{\log x}\sum_{\alpha\leq x, \alpha\in \mathcal{A}}\frac{1}{\alpha} >0$, alors pour tout $\varepsilon>0$, il existe une infinité de triplets $(\alpha, \beta, n)\in \mathcal{A}^2\times \mathbb{N}$ tels que $\alpha\neq \beta$ et $|n\alpha-\beta|<\varepsilon.$ Très peu de temps avant sa mort en 1996, il avait offert 500$ pour la résolution de ce problème de nature diophantienne.
Dans cet exposé, je présenterai un travail récent, en collaboration avec Dimitris Koukoulopoulos et Jared Lichtman, où l’on démontre cette conjecture.
Grands ensembles évitant certaines configurations
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 24 avril 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Alexandre Bailleul (ENS Paris-Saclay) Résumé :En se laissant guider par l’exemple des ensembles de Sidon (ensembles de nombres dont les sommes de deux éléments sont uniques, très étudiés en combinatoire additive), je présenterai des résultats récents, en collaboration avec R. Riblet, où des techniques de théorie des ensembles permettent de construire des ensembles « grands » en certains sens (cardinalité, mesure ou dimension) tout en étant « épars » car évitant des configurations prescrites (pas de relation linéaire, ou ne contenant pas de parallélogramme, etc.). Des questions subtiles en lien avec l’axiome du choix seront évoquées.
Pseudogroups and geometric structures
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 15 mai 2025 14:15-15:15 Lieu : Salle de réunion Metz (ARC-027) Oratrice ou orateur : Francesco Cattafi (Würzburg) Résumé :This philosophy can be made precise at various levels of generality (depending on the definition of « geometric structure ») and using different tools/methods. In this talk I will present some aspects of a new framework, which includes previous formalisms (e.g. G-structures or Cartan geometries) and allows us to prove integrability theorems.
A main novelty of this point of view consists of the fact that it uncovers the (beautiful!) hidden structures behind Lie pseudogroups and geometric structures. Indeed, the relevant objects which make this approach work are Lie groupoids endowed with a multiplicative « PDE-structure », their principal actions, and the related Morita theory. Poisson geometry provides the guiding principle to understand those objects, which are directly inspired from, respectively, symplectic groupoids, principal Hamiltonian bundles, and symplectic Morita equivalence.
This is based on a forthcoming book written jointly with Luca Accornero, Marius Crainic and María Amelia Salazar.
A venir
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 15 mai 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Athanasios Sourmelidis (CNRS, Lille) Résumé :Antonio Miti – titre à venir
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 5 juin 2025 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Antonio Miti (Rome) Résumé :Archives
Groupes hautement transitifs parmi ceux agissant sur un arbre
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 22 janvier 2021 14:15-15:15 Lieu : Oratrice ou orateur : Pierre Fima Résumé :Après une introduction aux groupes hautement transitifs et aux groupes agissant sur un arbre, je présenterai un résultat récent, en collaboration avec F. Le Maître, S. Moon et Y. Stalder caractérisant les groupes agissant sur un arbre qui sont hautement transitifs.
Non-vanishing of cubic L-functions
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 21 janvier 2021 14:30-15:30 Lieu : Oratrice ou orateur : Alexandra Florea Résumé :Résumé
Conformally invariant differential operators on Heisenberg groups and minimal representations
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 14 janvier 2021 14:15-15:15 Lieu : Oratrice ou orateur : Jan Frahm Résumé :On Euclidean space, the Fourier transform intertwines partial derivatives and coordinate multiplications. As a consequence, solutions to a constant coefficient PDE $p(D)u=0$ are mapped to distributions supported on the variety ${p(x)=0}$. In the context of unitary representation theory of semisimple Lie groups, so-called minimal representations can often be realized on Hilbert spaces of solutions to systems of constant coefficient PDEs whose inner product is difficult to describe (the non-compact picture of a degenerate principal series). The Euclidean Fourier transform provides a new realization on a space of distributions supported on a variety where the invariant inner product is simply an $L^2$-inner product on the variety (by the work of Vergne-Rossi, Sahi, Kobayashi-à˜rsted and Möllers-Schwarz). Recently, similar systems of differential operators have been constructed on Heisenberg groups. In this talk I will explain how to use the Heisenberg group Fourier transform to obtain an $L^2$-model for minimal representations in this context.
Comportement aléatoire local des suites réelles: résultats métriques, énergie additive et inégalités diophantiennes
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 7 janvier 2021 14:30-15:30 Lieu : Oratrice ou orateur : Marc Munsch Résumé :https://dev-iecl.univ-lorraine.fr/Les-Seminaires/Theorie-Des-Nombres/wolfcms/seminaire.html
Quantification par déformation des duaux d'algèbres de Leibniz
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 7 janvier 2021 14:15-15:15 Lieu : Oratrice ou orateur : Friedrich Wagemann Résumé :Il s’agit d’un travail en commun avec Bénoit Dhérin (Dublin) publié en 2015. Le dual d’une algèbre de Lie g (réelle de dimension finie) est une variété de Poisson grâce au crochet de Kostant-Kirillov-Souriau (KKS). Le starproduit de Simone Gutt en fournit une quantification par déformations et est lié à l’intégration d’une algèbre de Lie en groupe de Lie. Une algèbre de Leibniz (à gauche, réelle de dimension finie) est un espace vectoriel h muni d’un crochet qui vérifie que le crochet est une dérivation de lui-même: [x,[y,z]] = [[x,y],z] + [y,[x,z]]. C’est une généralisation non forcément antisymétrique des algèbres de Lie. D’o๠la question (d’Alan Weinstein) de savoir dans quel sens les duaux d’algèbres de Leibniz sont des variétés de Poisson et si elles admettent une quantification par déformation. Nous répondons dans notre travail avec B. Dhérin à ces deux questions. La démarche est la suivante: Cataneo-Dhérin-Weinstein ont introduit des micromorphismes entre germes de variétés symplectiques afin de rendre la quantification fonctorielle. Dans leur théorie, des fonctions génératrices de micromorphismes jouent le rôle de phase dans des intégrale oscillantes (opérateurs Fourier intégraux). L’expansion en phase stationnaire de ces intégrales fournit alors la quantification par déformations. Nous construisons une fonction génératrice associée au crochet de Leibniz et obtenons ainsi une quantification par déformations des duaux d’algèbres de Leibniz. La notion de variété de Poisson généralisée qui en découle (limite semiclassique) est très faible. Le crochet de Poisson généralisée est l’évaluation en 0 en une variable du crochet KKS.
Colonnes dans les automates cellulaires et suites généralisées de Rudin-Shapiro
Catégorie d’évènement : Analyse et théorie des nombres Date/heure : 17 décembre 2020 17:00-18:00 Lieu : Oratrice ou orateur : Pierre-Adrien Tahay Résumé :Organisé par S. Mehdi et A. Pasquale
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 17 décembre 2020 13:45-17:05 Lieu : Oratrice ou orateur : Rencontre spécial / Special meetingAfternoon representation theory Résumé :
Sur une équation de Schrödinger non-linéaire : unicité, non-dégénérescence et applications.
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 10 décembre 2020 14:45-15:45 Lieu : Oratrice ou orateur : Simona Rota Nodari Résumé :Dans cet exposé, après avoir énoncé un résultat concernant l’unicité et la non-dégénérescence des solutions radiales positives d’une classe d’équations elliptiques semi-linéaires, je m’intéresserai au cas particulier d’une équation de Schrödinger avec une non-linéarité donnée par une différence de puissances, i.e. $g(u)=u^q-u^p-mu u$ pour $p>q>1$ et $mu$ une constante positive. Dans ce cas, la non-dégénérescence de l’unique solution positive permet d’en analyser le comportement dans différents régimes du paramètre $mu$ et donne l’unicité des minimiseurs de l’énergie à masse fixé dans certains régimes. Mon exposé est basé sur un travail en collaboration avec Mathieu Lewin.
Théorèmes d'Erdös-Wintner effectifs
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 10 décembre 2020 14:30-15:30 Lieu : Oratrice ou orateur : Johann Verwee Résumé :https://dev-iecl.univ-lorraine.fr/Les-Seminaires/Theorie-Des-Nombres/wolfcms/seminaire.html
Titre de l'exposé
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 9 décembre 2020 14:15-15:15 Lieu : Oratrice ou orateur : Nom du conférencier Résumé :Résumé