Les principaux séminaires de l’équipe ont lieu le lundi aux horaires suivants :
- Séminaire de géométrie différentielle : 14h-15h
- Séminaire de géométrie complexe : 15h30-16h30
Les responsables sont Damian Brotbeck pour la géométrie complexe et Benoit Daniel pour la géométrie différentielle.
Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 6 janvier 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Classifying Fano 4-folds with a rational fibration onto a 3-fold
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 20 janvier 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Saverio Secci Résumé :In this talk I will present a joint work with C. Casagrande, in which we study smooth complex Fano 4-folds with a rational fibration onto a 3-fold. After an introduction on the setting and motivation, I will discuss our main result: if X is Fano 4-fold with a rational fibration onto a 3-fold and it is not a product of surfaces, then the Picard number of X is at most 9, and the bound is sharp. Moreover, I will present a classification result in a special case within the setting above, and show new examples of Fano 4-folds with large Picard number.
Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 3 février 2025 14:00-16:00 Lieu : Oratrice ou orateur : Stefan Kebekus Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 3 mars 2025 14:00-16:00 Lieu : Oratrice ou orateur : Hsueh-Yung Lin Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 3 mars 2025 14:00-16:00 Lieu : Oratrice ou orateur : Diego Izquierdo Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 28 avril 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 5 mai 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 2 juin 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Archives
Cohomologie des fibrés en droites sur G/B en caractéristique positive
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 27 mai 2019 14:00-15:00 Lieu : Oratrice ou orateur : Linyuan LIU Résumé :Soit G un groupe algébrique semi-simple sur un corps k algébriquement clos de caractéristique positive et soit B un sous-groupe de Borel. La cohomologie des fibrés en droites G-équivariants sur G/B induits par des
caractères de B sont des objets importants dans la théorie des représentations de G. Dans cet exposé, je vais commencer par rappeler des résultats à leur sujet, dus à Kempf, Griffith, Andersen, Jantzen, Kuhne-Hausmann, Irving, Doty, Sullivan, Donkin, etc.. Ensuite, je vais présenter les nouveaux résultats pour G=SL_3 obtenus dans ma thèse. Plus précisément, j’ai montré l’existence de deux filtrations de H^i(G/B,mu). La première existe pour i=1,2 et mu dans la région de Griffith.
La deuxième, qui généralise la p-filtration introduite par Jantzen, existe pour tout i et mu.
Autour de l'observabilité pour l'équation des ondes
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 20 mai 2019 14:00-15:00 Lieu : Oratrice ou orateur : Emmanuel Humbert Résumé :J’expliquerai comment un principe de compacité-concentration permet de montrer divers résultats, nouveaux ou déjà connus, concernant la constante d’observabilité de l’équation des ondes, puis en application, des résultats sur les mesures quantiques d’une variété riemannienne compacte. Il s’agit de travaux en collaboration avec Y. Privat et E. Trélat.
Chaînes de Nori
Catégorie d'évènement : Séminaire interne géométrie Date/heure : 13 mai 2019 13:00-14:00 Lieu : Oratrice ou orateur : Damien Mégy Résumé :Normalité des variétés de Schubert
Catégorie d'évènement : Groupe de travail Géométrie Date/heure : 13 mai 2019 10:15-12:00 Lieu : Oratrice ou orateur : Jeremy Daniel Résumé :Formules de Pieri
Catégorie d'évènement : Séminaire interne géométrie Date/heure : 6 mai 2019 13:00-14:00 Lieu : Oratrice ou orateur : Dimitry Kfoury Résumé :Cohomologie des fibrés en droites sur les variétés de Bott-Samelson - suite
Catégorie d'évènement : Groupe de travail Géométrie Date/heure : 6 mai 2019 10:15-12:00 Lieu : Oratrice ou orateur : Pierre-Emmanuel Chaput Résumé :Curve classes on irreducible holomorphic symplectic varieties
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 29 avril 2019 15:30-16:30 Lieu : Oratrice ou orateur : Giovanni Mongardi Résumé :We prove that the integral Hodge conjecture holds for 1-cycles on irreducible holomorphic symplectic varieties of K3 type and of Generalized Kummer type. As an application, we give a new proof of the integral Hodge conjecture for cubic fourfolds.
Surfaces à courbure moyenne constante dans $mathbb{S}^2timesmathbb{R}$ et $mathbb{H}^2timesmathbb{R}$
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 29 avril 2019 14:00-15:00 Lieu : Oratrice ou orateur : Iury Domingos Résumé :Dans cet exposé, on établira des conditions nécessaires et suffisantes pour qu’une 2-variété riemannienne soit isométriquement immergée comme surface à courbure moyenne constante dans certaines variétés produits. De plus, dans le cas o๠la 2-variéte riemannienne a une courbure intrinsèque constante, on classifiera ces immersions isométriques. Il s’agit d’un travail en cours en collaboration avec Benoît Daniel (UL) et Feliciano Vità³rio (UFAL).
Le problème de construction pour les nombres de Hodge, d'après Shreieder et Paulsen-Schreieder
Catégorie d'évènement : Séminaire interne géométrie Date/heure : 29 avril 2019 13:00-14:00 Lieu : Oratrice ou orateur : Damien Mégy Résumé :à€ une variété projective complexe on peut attacher de nombreux invariants : groupe fondamental, groupes de cohomologie singulière (en particulier, nombres de Betti, caractéristique d’Euler), structures de Hodge et en particulier nombres de Hodge, nombres et classes de Chern, etc.
Un « problème de construction » consiste à essayer de produire des variétés avec certains invariants fixés à l’avance. C’est en général très difficile et souvent ouvert.
On discutera de résultats récents de Schreieder et Paulsen-Schreieder qui expliquent comment construire des variétés projectives ayant des nombres de Hodge donnés (éventuellement modulo un entier m).
La première moitié de l’exposé sera complètement élémentaire, on rappelera la définition des nombres de Hodge, différentes méthodes de calcul, propriétés et applications, avec des exemples.
Orbifold de Calabi-Yau: réflexions et miroirs
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 1 avril 2019 15:30-16:30 Lieu : Oratrice ou orateur : Alessandro Chiodo Résumé :Grâce à Borcea, Dolgachev, Nikulin et Voisin il existe une version enrichie de la symétrie miroir qui s’applique aux surfaces K3, cas dans lequel l’énoncé ordinaire est trivial. Nous la traitons comme le point de départ d’un énoncé qui s’applique en dimension quelconque. Pour énoncer le théorème principal on revisitera l’énoncé de la correspondance de McKay qui relie une singularité et sa résolution. C’est un travail en collaboration avec Kalashnikov et Veniani.