Séminaires

A venir

Les principaux séminaires de l’équipe ont lieu le lundi aux horaires suivants :

  • Séminaire de géométrie différentielle : 14h-15h
  • Séminaire de géométrie complexe : 15h30-16h30

Les responsables sont Damian Brotbeck pour la géométrie complexe et Benoit Daniel pour la géométrie différentielle.


Séminaire Commun – Homotopies Stables de la Sphère

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 7 juillet 2025 14:00-16:00 Lieu : Oratrice ou orateur : Viet Cuong Pham Résumé :
 1) Exposé introductif :
   – Titre : Groupes d’homotopie stable de la sphère
   – Résumé : Après avoir rappelé les groupes d’homotopie (stable) de la sphère, j’établirai un lien entre le dernier avec les structures différentielles exotiques sur les sphères topologiques. L’invariant de Kervaire entre alors en jeu. Je terminerai cet exposé avec la suite spectrale d’Adams qui est un outil important pour calculer les groupes d’homotopie stable.
2) Exposé spécialisé :
  – Titre : Théorie d’homotopie stable chromatique
  – Résumé : La théorie d’homotopie chromatique introduit une filtration sur les groupes d’homotopie stable via la localisation de Bousfield par les E-théories homologiques de Morava à l’image de la filtration des groupes formels via leurs hauteurs. Les calculs des strates de cette filtration qui sont plus abordables que le calcul direct des groupes d’homotopie stable permettent de détecter des familles infinies d’éléments de ces derniers. Je commencerai l’exposé par une introduction à la théorie générale, puis parlerai des avancés dans le calcul du deuxième niveau de la filtration chromatique et pour finir, expliquerai des applications dans la détection des structures exotiques sur les sphères.

Archives

Normalité des variétés de Schubert

Catégorie d’évènement : Groupe de travail Géométrie Date/heure : 13 mai 2019 10:15-12:00 Lieu : Oratrice ou orateur : Jeremy Daniel Résumé :

Formules de Pieri

Catégorie d’évènement : Séminaire interne géométrie Date/heure : 6 mai 2019 13:00-14:00 Lieu : Oratrice ou orateur : Dimitry Kfoury Résumé :

Cohomologie des fibrés en droites sur les variétés de Bott-Samelson – suite

Catégorie d’évènement : Groupe de travail Géométrie Date/heure : 6 mai 2019 10:15-12:00 Lieu : Oratrice ou orateur : Pierre-Emmanuel Chaput Résumé :

Curve classes on irreducible holomorphic symplectic varieties

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 29 avril 2019 15:30-16:30 Lieu : Oratrice ou orateur : Giovanni Mongardi Résumé :

We prove that the integral Hodge conjecture holds for 1-cycles on irreducible holomorphic symplectic varieties of K3 type and of Generalized Kummer type. As an application, we give a new proof of the integral Hodge conjecture for cubic fourfolds.


Surfaces à  courbure moyenne constante dans $mathbb{S}^2timesmathbb{R}$ et $mathbb{H}^2timesmathbb{R}$

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 29 avril 2019 14:00-15:00 Lieu : Oratrice ou orateur : Iury Domingos Résumé :

Dans cet exposé, on établira des conditions nécessaires et suffisantes pour qu’une 2-variété riemannienne soit isométriquement immergée comme surface à  courbure moyenne constante dans certaines variétés produits. De plus, dans le cas o๠la 2-variéte riemannienne a une courbure intrinsèque constante, on classifiera ces immersions isométriques. Il s’agit d’un travail en cours en collaboration avec Benoît Daniel (UL) et Feliciano Vità³rio (UFAL).


Le problème de construction pour les nombres de Hodge, d'après Shreieder et Paulsen-Schreieder

Catégorie d’évènement : Séminaire interne géométrie Date/heure : 29 avril 2019 13:00-14:00 Lieu : Oratrice ou orateur : Damien Mégy Résumé :

à€ une variété projective complexe on peut attacher de nombreux invariants : groupe fondamental, groupes de cohomologie singulière (en particulier, nombres de Betti, caractéristique d’Euler), structures de Hodge et en particulier nombres de Hodge, nombres et classes de Chern, etc.

Un « problème de construction » consiste à  essayer de produire des variétés avec certains invariants fixés à  l’avance. C’est en général très difficile et souvent ouvert.

On discutera de résultats récents de Schreieder et Paulsen-Schreieder qui expliquent comment construire des variétés projectives ayant des nombres de Hodge donnés (éventuellement modulo un entier m).

La première moitié de l’exposé sera complètement élémentaire, on rappelera la définition des nombres de Hodge, différentes méthodes de calcul, propriétés et applications, avec des exemples.


Orbifold de Calabi-Yau: réflexions et miroirs

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 1 avril 2019 15:30-16:30 Lieu : Oratrice ou orateur : Alessandro Chiodo Résumé :

Grâce à  Borcea, Dolgachev, Nikulin et Voisin il existe une version enrichie de la symétrie miroir qui s’applique aux surfaces K3, cas dans lequel l’énoncé ordinaire est trivial. Nous la traitons comme le point de départ d’un énoncé qui s’applique en dimension quelconque. Pour énoncer le théorème principal on revisitera l’énoncé de la correspondance de McKay qui relie une singularité et sa résolution. C’est un travail en collaboration avec Kalashnikov et Veniani.


On non-compact quasi-Einstein manifolds

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 1 avril 2019 14:00-15:00 Lieu : Oratrice ou orateur : Marcos Ranieri Résumé :

In this talk, we will show some results about quasi-Einstein manifolds. Quasi-Einstein manifolds can be characterized as bases of Einstein warped products. On the first part, we investigated the infinity structure of a complete non-compact quasi-Einstein manifolds. In particular, we show that if M is a base of a Ricci-flat warped product then M is connected at infinity. When M is the basis of an Einstein warped product with Einstein constant λ < 0, there are examples with more than one end. In this case, we show that M is non-parabolic and, on a given hypothesis about scalar curvature, M has only one end f-non-parabolic. In addition, we obtain two estimates for the volume of the geodesic balls of M. On the second part, we will show that Bach-flat non-compact quasi-Einstein manifolds with λ = 0 and positive Ricci curvature are isometric to a rotationally symmetric metric whose fiber is a Einstein manifold.

This is joint work with R. Batista and E. Ribeiro Jr.


Le groupe G^min

Catégorie d’évènement : Groupe de travail Géométrie Date/heure : 1 avril 2019 10:15-12:00 Lieu : Oratrice ou orateur : Guy Rousseau Résumé :

Sur la positivité du fibré cotangent logarithmique

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 25 mars 2019 15:00-16:00 Lieu : Oratrice ou orateur : Damian Brotbek Résumé :

Ceci est un travail en commun avec Ya Deng. Étant donnée une paire (X,D) composée d’une variété complexe projective lisse X et d’un diviseur à  croisements normaux simples D, la positivité du fibré cotangent logarithmique de (X,D) a de fortes implications sur les propriétés géométriques du complémentaire de D dans X, notamment sur ses propriétés d’hyperbolicité. Dès que X est de dimension plus grande que deux et que D est non-vide, le fibré cotangent logarithmique de (X,D) ne peut pas être ample. Dans cet exposé nous donnerons une description des obstructions à  l’amplitude et exhiberons des exemples o๠le cotangent logarithmic est « aussi ample que possible ».