Les principaux séminaires de l’équipe ont lieu le lundi aux horaires suivants :
- Séminaire de géométrie différentielle : 14h-15h
- Séminaire de géométrie complexe : 15h30-16h30
Les responsables sont Damian Brotbeck pour la géométrie complexe et Benoit Daniel pour la géométrie différentielle.
Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 6 janvier 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Classifying Fano 4-folds with a rational fibration onto a 3-fold
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 20 janvier 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Saverio Secci Résumé :In this talk I will present a joint work with C. Casagrande, in which we study smooth complex Fano 4-folds with a rational fibration onto a 3-fold. After an introduction on the setting and motivation, I will discuss our main result: if X is Fano 4-fold with a rational fibration onto a 3-fold and it is not a product of surfaces, then the Picard number of X is at most 9, and the bound is sharp. Moreover, I will present a classification result in a special case within the setting above, and show new examples of Fano 4-folds with large Picard number.
Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 3 février 2025 14:00-16:00 Lieu : Oratrice ou orateur : Stefan Kebekus Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 3 mars 2025 14:00-16:00 Lieu : Oratrice ou orateur : Hsueh-Yung Lin Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 3 mars 2025 14:00-16:00 Lieu : Oratrice ou orateur : Diego Izquierdo Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 28 avril 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 5 mai 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 2 juin 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Archives
Hyperbolicité et spécialité des produits symétriques
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 2 novembre 2020 14:00-15:00 Lieu : Oratrice ou orateur : Benoit Cadorel Résumé :Un résultat d’Arapura et Archava montre qu’un produit symétrique d’une variété X de type général est aussi de type général, dès que X est de dimension au moins 2 ; il s’agit essentiellement de montrer que les singularités de ce produit sont canoniques. Ce résultat mène naturellement à un certain nombre de questions : si X est hyperbolique, les produits symétriques le sont-ils aussi ? à l’inverse, la propriété « spéciale » de F. Campana est-elle invariante par produit symétrique ?
Ces questions forment en général un problème plus difficile qu’il n’y parait ; on verra que sans des hypothèses supplémentaires sur la variété X, les réponses sont en général négatives. Cependant, sous certaines hypothèses de positivité naturelles sur X, on peut obtenir des contraintes fortes sur les courbes entières tracées sur les produits symétriques. Ceci permet notamment de construire de nombreux exemples de produits symétriques hyperboliques, en choisissant un X adéquat (par exemple une hypersurface ou intersection complète de haut degré, un quotient de domaine symétrique borné…)
Il s’agit d’un travail en commun avec F. Campana et E. Rousseau.
The decomposition Theorem in the smooth case
Catégorie d'évènement : Groupe de travail Géométrie Date/heure : 2 novembre 2020 10:30-12:00 Lieu : Oratrice ou orateur : Francesco Denisi Résumé :in this talk I’ll give a somewhat detailed proof of the decomposition theorem for connected compact Kaehler manifolds with vanishing first (real) Chern class, following Beauville. Therefore I will investigate the structure of such kind of manifolds and show that their building blocks are Complex Tori, Calabi-Yau manifolds and Irreducible Holomorphic symplectic manifolds… but « just » up to a finite étale covering. We will see how this deep result is a consequence of Yau’s Theorem and other results from Riemannian geometry so that we get a (very nice) link between differential geometry and complex algebraic geometry.
Lambda-immeubles associés aux groupes réductifs quasi-déployés sur les corps Lambda valués
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 19 octobre 2020 14:00-15:00 Lieu : Oratrice ou orateur : Auguste Hébert Résumé :soit G un groupe réductif déployé sur un corps K muni d’une
valuation à valeurs dans R. Dans les années 70, Bruhat et Tits ont
construit un espace appelé « immeuble » sur lequel G agit. On peut alors
étudier G via son action sur l’immeuble.
Je parlerai d’une généralisation de cette construction que nous avons
obtenue avec Diego Izquierdo et Benoit Loisel dans le cas o๠la
valuation est à valeur dans un groupe abélien totalement ordonné Lambda
quelconque.
Une introduction à la décomposition de Beauville-Bogomolov dans le cas singulier
Catégorie d'évènement : Groupe de travail Géométrie Date/heure : 19 octobre 2020 10:30-12:00 Lieu : Oratrice ou orateur : Gianluca Pacienza Résumé :Dans ce premier exposé introductif, très élémentaire, j’essayerai de motiver l’étude du cas singulier et présenterai un certain nombre d’exemples dans le but d’introduire les définitions de variété de Calabi-Yau et IHS dans le cas singulier.
formes fondamentales des variétés homogènes minuscules
Catégorie d'évènement : Groupe de travail Géométrie Date/heure : 28 septembre 2020 14:00-15:00 Lieu : Oratrice ou orateur : Pierre-Emmanuel Chaput Résumé :Je reprendrai les résultats montrés l’année dernière sur les formes fondamentales en général.
Ensuite, je ferai des rappels sur les espaces homogènes et leurs plongements et en particulier les espaces homogènes minuscules.
Si le temps le permet, j’essaierai de montrer le Théorème 3.1 de l’article de Landsberg-Manivel (« On the projective geometry of rational homogeneous varieties ») qui porte sur les formes fondamentales k-ièmes des espaces homogènes minuscules.
Propriétés de Lefschetz difficile et de Hodge-Riemann
Catégorie d'évènement : Séminaire interne géométrie Date/heure : 21 septembre 2020 14:00-15:00 Lieu : Oratrice ou orateur : Matei TOMA Résumé :L’exposé portera sur un travail avec Julius Ross. On sait que les puissances des classes amples sur les variétés projectives complexes ont les propriétés de Lefschetz difficile et de Hodge-Riemann. On montrera que les classes de Schur des fibrés vectoriels amples ont également ces propriétés et on en déduira des inégalités de type Khovanskii-Teissier pour les classes caractéristiques des fibrés vectoriels amples. Notre résultat nous permet en plus de donner une réponse négative à une question de Debarre, Ein, Lazarsfeld et Voisin sur les cônes de cycles positifs en dimension et codimension supérieures à 1. Finalement on discutera quelques conjectures en relation avec notre résultat principal.
Quasi-positivité de fibrés cotangents orbifoldes
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 14 septembre 2020 14:00-15:00 Lieu : Oratrice ou orateur : Lionel Darondeau Résumé :C’est un travail commun avec Erwan Rousseau (arXiv:2006.13515). Nous explorons la positivité des fibrés cotangents logarithmiques et orbifoldes le long d’arrangements d’hyperplans dans l’espace projectif. Nous montrons qu’un exemple très intéressant de Noguchi (1986) peux être généralisé très largement. Les ingrédients clés de notre approche sont l’utilisation de recouvrements de Fermat et la production de différentielles symétriques explicites, dans le cadre orbifolde de Campana. Ceci nous permet d’obtenir des nouveaux résultats dans la lignée de plusieurs résultats classiques concernant les arrangements d’hyperplans.
Surfaces complexes compactes non Kälhériennes
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 15 juillet 2020 14:00-15:00 Lieu : Oratrice ou orateur : Matei Toma Résumé :Surfaces complexes compactes non kählériennes
Catégorie d'évènement : Séminaire interne géométrie Date/heure : 15 juillet 2020 14:00-15:00 Lieu : Oratrice ou orateur : Matei TOMA Résumé :Automorphismes des variétés de caractères
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 11 mai 2020 14:00-15:00 Lieu : Oratrice ou orateur : Christopher-Lloyd SIMON Résumé :J’exposerai un travail en collaboration avec Julien Marché au sujet de la variété des SL(2,C)-caractères d’un groupes de surface hyperbolique. Nous montrons que son groupe d’automorphismes algébriques est une extension finie du groupe modulaire de la surface. Nous obtenons au passage une description simple des laminations mesurées en termes de valuations.(N.B.: Exposé en ligne)