A venir
Les principaux séminaires de l’équipe ont lieu le lundi aux horaires suivants :
- Séminaire de géométrie différentielle : 14h-15h
- Séminaire de géométrie complexe : 15h30-16h30
Les responsables sont Damian Brotbeck pour la géométrie complexe et Benoit Daniel pour la géométrie différentielle.
Groupes d'automorphismes des surfaces del Pezzo de degré 5
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 10 novembre 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Aurore Boitrel Résumé :Spectral properties of symmetrized AMV operators
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 10 novembre 2025 15:30-16:30 Lieu : Oratrice ou orateur : Manuel Dias Résumé :The symmetrized Asymptotic Mean Value Laplacian \tilde{\Delta}, is obtained as limit of approximating integral operators \tilde{\Delta}_r, and is an extension of the classical Euclidean Laplace operator to the realm of metric measure spaces. We show that in the limit as r->0, as the operators eventually admit isolated eigenvalues defined via min-max procedure on any compact uniformly locally doubling metric measure space. Then we prove L^2 and spectral convergence of \tilde{\Delta}_r to the Laplace-Beltrami operator of a compact Riemannian manifold, imposing Neumann conditions when the manifold has a non-empty boundary.
Rigidity and Monotonicity of the Hawking Energy on Hawking Surfaces
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 17 novembre 2025 15:30-16:30 Lieu : Oratrice ou orateur : Alejandro Penuela Diaz Résumé :The Hawking energy is one of the simplest quasi-local energy definitions in general relativity. Despite its simplicity, the Hawking energy has faced challenges due to ambiguities when applied to general surfaces. In this talk, I will present recent results demonstrating that the Hawking energy exhibits key physical and mathematical properties—non-negativity, rigidity,
and monotonicity—when evaluated on a generalization of area-constrained Willmore surfaces (Hawking surfaces). In particular such properties hold for area-constrained Willmore surfaces on manifolds with nonnegative scalar curvature. These results establish Hawking surfaces as a useful tool for evaluating the Hawking energy and reinforce its potential as a meaningful tool for understanding gravitational phenomena.
Groupe de travail de géométrie – Variétés kählériennes compactes uniréglées V
Catégorie d’évènement : Géométrie Date/heure : 21 novembre 2025 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Damian Brotbek Résumé :Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 5 janvier 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Titre à préciser
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 26 janvier 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Andrei Moroianu Résumé :Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 2 février 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Titre à préciser
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 9 février 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Laurent Hauswirth Résumé :Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 2 mars 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Titre à préciser
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 30 mars 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Hiba Bibi Résumé :Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 4 mai 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 1 juin 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 6 juillet 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Archives
Espaces métriques injectifs, espaces symétriques et immeubles
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 12 avril 2021 14:00-15:00 Lieu : Salle de géométrie virtuelle Oratrice ou orateur : Thomas Haettel Résumé :Nous allons nous intéresser aux espaces métriques injectifs, où toute famille de boules s’intersectant deux à deux s’intersecte globalement, ainsi qu’à leur contrepartie discrète que sont les graphes de Helly. L’étude des actions de groupes sur de tels espaces permet d’en déduire de nombreuses propriétés typiques de la courbure négative. Nous montrerons que les espaces symétriques classiques peuvent être munis d’une métrique injective, tandis que les immeubles de Bruhat-Tits classiques peuvent être munis d’une structure de graphe de Helly.
L'invariance birationnelle des invariants de Bershadsky-Cecotti-Ooguri-Vafa
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 29 mars 2021 15:30-16:30 Lieu : Salle de géométrie virtuelle Oratrice ou orateur : Lie Fu Résumé :En utilisant la torsion analytique, Bershadsky, Cecotti, Ooguri et Vafa ont défini un invariant à valeurs réelles, appelé l’invariant de BCOV, pour les variétés de Calabi-Yau. L’invariant de BCOV est conjecturalement le miroir dans le B-modèle de l’invariant de Gromov-Witten de genre 1. Après une introduction à cet invariant, je vais présenter la démonstration récente de la conjecture de Fang-Lu-Yoshikawa, qui dit que deux variétés de Calabi-Yau birationnellement isomorphes ont le même invariant de BCOV. Si le temps le permet, j’expliquerai une généralisation de la définition des invariants de BCOV pour les variétés de Calabi-Yau singulières, ainsi que son invariance birationnelle. Il s’agit d’un travail commun avec Yeping Zhang (arXiv: 2007.04835).
Quelques propriétés du groupe de Cremona
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 29 mars 2021 14:00-15:00 Lieu : Oratrice ou orateur : Julie Déserti Résumé :Après avoir introduit le groupe de Cremona j’expliquerai comment on peut étudier ses sous-groupes résolubles et les plongements du groupe de Heisenberg dans celui-ci.
Intersection des courbes holomorphes et hypersurfaces génériques
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 22 mars 2021 15:30-16:30 Lieu : Salle de géométrie virtuelle Oratrice ou orateur : Vu Duc Viet Résumé :Dans un espace projectif complexe, le nombre des points (sans compter la multiplicité) de l’intersection d’une courbe algébrique et d’une hypersurface générique est le produit de leur degré. J’explique comment obtenir un énoncé analogue pour des courbes holomorphes entières.
Topologie des sous-variétés lagrangiennes et génération de la catégorie de Fukaya d'une variété de Weinstein
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 22 mars 2021 14:00-15:00 Lieu : Salle de géométrie virtuelle Oratrice ou orateur : Baptiste Chantraine Résumé :Les catégories de Fukaya sont des catégories A_infini dont les objets sont les sous-variétés lagrangiennes d’une variété symplectique ; trouver un système générateur pour celles-ci permet d’extraire de l’information fine sur la topologie de ces sous-variétés lagrangiennes. Dans cet exposé j’introduirai les notions de base du sujet (sous-variétés lagrangiennes, catégories A-infini, systèmes générateurs …) dans le cadre des variétés de Weinstein (qui contient le cas des fibrés cotangents). Je décrirai ensuite un système de générateurs dans ce contexte et expliquerai comment celui-ci peut-être utilisé pour permettre des calculs explicites d’invariants des sous-variétés lagrangiennes afin d’étudier leur topologie. C’est une combinaison de divers travaux dont certains en collaboration avec G. Dimitroglou-Rizell, P. Ghiggini et R. Golovko.
Revêtements doubles et extensions de courbes canoniques
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 15 mars 2021 15:30-16:30 Lieu : Salle de géométrie virtuelle Oratrice ou orateur : Thomas Dedieu Résumé :Je donnerai une présentation détaillée des revêtements doubles des espaces projectifs, et en particulier des systèmes
linéaires $|kL|$ obtenus en tirant-en-arrière la classe d’équivalence linéaire des hypersurfaces de degré $k$ de l’espace projectif. J’examinerai avec une attention particulière les doubles plans sextiques, qui sont des surfaces K3 de genre 2, dans le but de décrire les extensions des courbes canoniques obtenues par le système $|kL|$. On rappelle qu’une extension de X plongée dans $P^N$ est $Y$ dans $P^{N+1}$ qui a $X$ comme section hyperplane.
Le théorème de décomposition pour les variétés de Calabi Yau singulières, II
Catégorie d’évènement : Groupe de travail Géométrie Date/heure : 15 mars 2021 10:30-11:30 Lieu : Zoom Oratrice ou orateur : Christian Lehn (Chemnitz) Résumé :Suite de l’exposé du 8 mars.
We extend the decomposition theorem for numerically $K$-trivial varieties with log terminal singularities to the Kähler setting. Along the way we prove that all such varieties admit a strong locally trivial algebraic approximation, thus completing the numerically $K$-trivial case of a conjecture of Campana and Peternell.
Groupes algébriques agissant sur le plan projectif
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 8 mars 2021 15:30-16:30 Lieu : Salle de géométrie virtuelle Oratrice ou orateur : Susanna Zimmermann Résumé :Quels groupes algébriques agissent de façon birationnelle sur le plan projectif ? Après avoir regarder quelques exemples sur des corps divers, je vais expliquer comment attaquer la classification et la donner pour les groupes infinis.
Quelques résultats sur l’indice des surfaces minimales à bord libre dans la boule unité
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 8 mars 2021 14:00-15:00 Lieu : Salle de géométrie virtuelle Oratrice ou orateur : Baptiste Devyver (Grenoble) Résumé :Des travaux de A. Fraser et R. Schoen ont récemment relancé l’intérêt pour les surfaces minimales à bord libre. De nombreux exemples de surfaces minimales à bord libre dans la boule unité ont notamment été construits. De telle surfaces ne sont jamais des minimums de la fonctionnelle d’aire, et on quantifie combien elles sont loin d’être des minimums à l’aide d’un nombre entier, l’indice de Morse. Dans cet exposé, je présenterai des résultats concernant l’indice de Morse des surfaces minimales à bord libre dans la boule unité ; une question ouverte est notamment de classifier de telles surfaces de petit indice.
Algebraic approximation and the decomposition theorem for Kähler Calabi-Yau varieties
Catégorie d’évènement : Groupe de travail Géométrie Date/heure : 1 mars 2021 10:30-12:00 Lieu : Salle de géométrie virtuelle Oratrice ou orateur : Christian Lehn Résumé :We extend the decomposition theorem for numerically $K$-trivial varieties with log terminal singularities to the Kähler setting. Along the way we prove that all such varieties admit a strong locally trivial algebraic approximation, thus completing the numerically $K$-trivial case of a conjecture of Campana and Peternell.