Séminaires

A venir

Les principaux séminaires de l’équipe ont lieu le lundi aux horaires suivants :

  • Séminaire de géométrie différentielle : 14h-15h
  • Séminaire de géométrie complexe : 15h30-16h30

Les responsables sont Damian Brotbeck pour la géométrie complexe et Benoit Daniel pour la géométrie différentielle.


Groupes d'automorphismes des surfaces del Pezzo de degré 5

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 10 novembre 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Aurore Boitrel Résumé :
Les surfaces del Pezzo et leurs groupes d’automorphismes jouent un rôle clé dans la classification, à conjugaison près, des sous-groupes du groupe de Cremona du plan projectif. Sur un corps algébriquement clos, elles sont complètement classifiées, de même que le sont leurs groupes d’automorphismes. En particulier, il existe une unique classe d’isomorphismes de surfaces del Pezzo de degré 5 sur un corps algébriquement clos. Nous nous intéresserons dans cet exposé aux surfaces del Pezzo de degré 5 définies sur un corps parfait, auquel cas il existe beaucoup de surfaces supplémentaires. Nous expliquerons comment l’étude de l’action du groupe de Galois sur le graphe des (-1)-courbes nous permet de donner une description par générateurs de leurs groupes d’automorphismes en termes d’automorphismes et de transformations birationnelles.

Spectral properties of symmetrized AMV operators

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 10 novembre 2025 15:30-16:30 Lieu : Oratrice ou orateur : Manuel Dias Résumé :

The symmetrized Asymptotic Mean Value Laplacian \tilde{\Delta}, is obtained as limit of approximating integral operators \tilde{\Delta}_r, and is an extension of the classical Euclidean Laplace operator to the realm of metric measure spaces. We show that in the limit as r->0, as the operators eventually admit isolated eigenvalues defined via min-max procedure  on any compact uniformly locally doubling metric measure space. Then we prove L^2 and spectral convergence of \tilde{\Delta}_r to the Laplace-Beltrami operator of a compact Riemannian manifold, imposing Neumann conditions when the manifold has a non-empty boundary.


Rigidity and Monotonicity of the Hawking Energy on Hawking Surfaces

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 17 novembre 2025 15:30-16:30 Lieu : Oratrice ou orateur : Alejandro Penuela Diaz Résumé :

The Hawking energy is one of the simplest quasi-local energy definitions in general relativity. Despite its simplicity, the Hawking energy has faced challenges due to ambiguities when applied to general surfaces. In this talk, I will present recent results demonstrating that the Hawking energy exhibits key physical and mathematical properties—non-negativity, rigidity,
and monotonicity—when evaluated on a generalization of  area-constrained Willmore surfaces  (Hawking surfaces). In particular such properties hold for area-constrained Willmore surfaces on manifolds with nonnegative scalar curvature.  These results establish Hawking surfaces as a useful tool for evaluating the Hawking energy and reinforce its potential as a meaningful tool for understanding gravitational phenomena.


Groupe de travail de géométrie – Variétés kählériennes compactes uniréglées V

Catégorie d’évènement : Géométrie Date/heure : 21 novembre 2025 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Damian Brotbek Résumé :

Séminaire commun de géométrie

Catégorie d’évènement : Géométrie Date/heure : 5 janvier 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Titre à préciser

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 26 janvier 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Andrei Moroianu Résumé :

Séminaire commun de géométrie

Catégorie d’évènement : Géométrie Date/heure : 2 février 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Titre à préciser

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 9 février 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Laurent Hauswirth Résumé :

Séminaire commun de géométrie

Catégorie d’évènement : Géométrie Date/heure : 2 mars 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Titre à préciser

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 30 mars 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Hiba Bibi Résumé :

Séminaire commun de géométrie

Catégorie d’évènement : Géométrie Date/heure : 4 mai 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d’évènement : Géométrie Date/heure : 1 juin 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d’évènement : Géométrie Date/heure : 6 juillet 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Archives

Structure des classes de conjugaison dans les groupes de Coxeter

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 15 février 2021 15:30-16:30 Lieu : Salle de géométrie virtuelle Oratrice ou orateur : Timothée Marquis Résumé :

Dans cet exposé, je présenterai une solution définitive au problème de décrire les classes de conjugaison d’un groupe de Coxeter arbitraire en termes de permutations cycliques. Après avoir motivé le problème et passé en revue son histoire, j’expliquerai l’idée-clef, de nature géométrique, derrière la preuve de sa solution.


Prescription de la courbure de Gauss pour les corps convexes dans les espaces hyperboliques

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 15 février 2021 14:00-15:00 Lieu : Salle de géométrie virtuelle Oratrice ou orateur : Jérôme Bertrand Résumé :

The Gauss curvature measure of a pointed Euclidean convex body is a measure on the unit sphere which extends the notion of Gauss curvature to non-smooth bodies. Alexandrov’s problem consists in finding a convex body with given curvature measure. In Euclidean space, A.D. Alexandrov gave a necessary and sufficient condition on the measure for this problem to have a solution.

In this paper, we address Alexandrov’s problem for convex bodies in the hyperbolic space $\mathbf{H}^{m+1}$ . After defining the Gauss curvature measure of an arbitrary hyperbolic convex body, we completely solve Alexandrov’s problem in this setting. Contrary to the Euclidean case, we also prove the uniqueness of such a convex body. The methods for proving existence and uniqueness of the solution to this problem are both new.


A characterization of non-compact ball quotient

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 8 février 2021 15:30-16:30 Lieu : Exposé en ligne Oratrice ou orateur : Résumé :

In 1988 Simpson proved a uniformization theorem which characterizes complex projective manifolds and quasi-projective curves whose universal coverings are complex unit balls. In this talk, I will give a necessary and sufficient condition for quasi-projective manifolds to be uniformized by complex unit balls, via stability of (logarithmic) Higgs bundles. This is based on a joint work with Benoit Cadorel.


Une entropie relative pour les solutions auto-similaires expansives du flot de Ricci

Catégorie d’évènement : Géométrie Date/heure : 8 février 2021 14:00-14:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Résumé :

En collaboration avec Felix Schulze (Warwick University)

Les solutions auto-similaires expansives du flot de Ricci sont des solutions n’évoluant que par homothéties et difféomorphismes. De telles solutions sont aussi appelées solitons (gradients) expansifs de Ricci. Ces métriques sont de bons candidats pour lisser instantanément des singularités métriques (isolées) éventuellement kahlériennes. Nous traitons ici la question de l’unicité de telles solutions ayant pour condition initiale un cône métrique fixé. Comme première étape, nous développons une fonctionnelle de Lyapunov appelée entropie relative dans ce contexte.


Une entropie relative pour les solutions auto-similaires expansives du flot de Ricci

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 8 février 2021 14:00-15:00 Lieu : Oratrice ou orateur : Alix Deruelle Résumé :

En collaboration avec Felix Schulze (Warwick University)

Les solutions auto-similaires expansives du flot de Ricci sont des solutions n’évoluant que par homothéties et difféomorphismes. De telles solutions sont aussi appelées solitons (gradients) expansifs de Ricci. Ces métriques sont de bons candidats pour lisser instantanément des singularités métriques (isolées) éventuellement kahlériennes. Nous traitons ici la question de l’unicité de telles solutions ayant pour condition initiale un cône métrique fixé. Comme première étape, nous développons une fonctionnelle de Lyapunov appelée entropie relative dans ce contexte.


Entropie à  l'infini et applications en courbure négative

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 25 janvier 2021 14:00-15:00 Lieu : Oratrice ou orateur : Samuel Tapie Résumé :

Dans cet exposé, je présenterai des travaux récents sur le flot géodésique des variétés non-compactes à  courbure négative, dont la plupart sont en collaboration avec B. Schapira et S. Gouà«zel. Je commencerai par rappeler le contexte géométrique et certains de ses liens avec la théorie géométrique des groupes et l’analyse sur les variétés. Puis je présenterai diverses visions classiques de l’entropie du flot géodésique en courbure négative, à  partir desquelles j’introduirai la notion d’entropie à  l’infini.

On dit qu’une variété présente un « trou critique » si l’entropie totale est strictement plus grande que l’entropie à  l’infini. J’expliquerai enfin pourquoi ce concept de trou critique semble central pour l’étude des dynamiques non-compactes, et je présenterai divers résultats que nous avons obtenu à  ce sujet et quelques travaux en cours.


Variétés à  fibré canonique trivial et fibré tangent fortement stable (d'après Greb-Guenancia-Kebekus)

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 14 décembre 2020 10:30-12:00 Lieu : Oratrice ou orateur : Damian Brotbek Résumé :

Dans cet exposé nous montrerons, en suivant l’article de Greb-Guenancia-Kebekus, qu’une variété projective klt à  fibré canonique numériquement trivial et dont le fibré tangent est fortement stable est, à  revêtement quasi étale près, soit une variété de CY soit une variété de Calabi-Yau soit une variété irréductible symplectique.


Wronskiens Généralisés et applications

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 7 décembre 2020 14:00-15:00 Lieu : Oratrice ou orateur : Antoine Étesse Résumé :

https://bul.univ-lorraine.fr/index.php/s/WDWrwG4sMHcHoso


Décomposition d'holonomie du fibré tangent. (D'après Greb-Guenancia-Kebekus).

Catégorie d’évènement : Groupe de travail Géométrie Date/heure : 7 décembre 2020 10:30-12:00 Lieu : Oratrice ou orateur : Damian Brotbek Résumé :

Dans cet exposé nous démontrerons un théorème de décomposition du fibré tangent des variétés à  canonique trivial raffinant le théorème de décomposition de Greb-Kebekus-Peternell.
La preuve se base de façon essentielle sur l’utilisation de la décomposition d’holonomie du fibré tangent associée à  la métrique Ricci plate de Eyssidieux-Guedj-Zeriahi sur le lieu régulier. (Le contenu de cet exposé couvre la partie II de l’article de Greb-Guenancia-Kebekus).


Calcul de Schubert affine et formules de Pier

Catégorie d’évènement : Géométrie Date/heure : 4 décembre 2020 14:00-15:00 Lieu : Oratrice ou orateur : Dimitry Kfoury Résumé :