Séminaires

A venir

Les principaux séminaires de l’équipe ont lieu le lundi aux horaires suivants :

  • Séminaire de géométrie différentielle : 14h-15h
  • Séminaire de géométrie complexe : 15h30-16h30

Les responsables sont Damian Brotbeck pour la géométrie complexe et Benoit Daniel pour la géométrie différentielle.


Séminaire Commun – Homotopies Stables de la Sphère

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 7 juillet 2025 14:00-16:00 Lieu : Oratrice ou orateur : Viet Cuong Pham Résumé :
 1) Exposé introductif :
   – Titre : Groupes d’homotopie stable de la sphère
   – Résumé : Après avoir rappelé les groupes d’homotopie (stable) de la sphère, j’établirai un lien entre le dernier avec les structures différentielles exotiques sur les sphères topologiques. L’invariant de Kervaire entre alors en jeu. Je terminerai cet exposé avec la suite spectrale d’Adams qui est un outil important pour calculer les groupes d’homotopie stable.
2) Exposé spécialisé :
  – Titre : Théorie d’homotopie stable chromatique
  – Résumé : La théorie d’homotopie chromatique introduit une filtration sur les groupes d’homotopie stable via la localisation de Bousfield par les E-théories homologiques de Morava à l’image de la filtration des groupes formels via leurs hauteurs. Les calculs des strates de cette filtration qui sont plus abordables que le calcul direct des groupes d’homotopie stable permettent de détecter des familles infinies d’éléments de ces derniers. Je commencerai l’exposé par une introduction à la théorie générale, puis parlerai des avancés dans le calcul du deuxième niveau de la filtration chromatique et pour finir, expliquerai des applications dans la détection des structures exotiques sur les sphères.

Archives

Variétés de drapeaux généralisées des groupes de Kac-Moody

Catégorie d’évènement : Groupe de travail Géométrie Date/heure : 4 février 2019 10:15-12:00 Lieu : Oratrice ou orateur : Nicole Bardy-Panse Résumé :

The Mumford-Tate conjecture for products of abelian varieties

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 28 janvier 2019 15:30-16:30 Lieu : Oratrice ou orateur : Johan Commelin Résumé :

The Mumford-Tate conjecture relates the Hodge structure on the singular
cohomology of an algebraic variety (over a number field) with the
Galois
representation on the etale cohomology of that variety. In this talk I
will report on techniques for proving the Mumford-Tate conjecture for
products of abelian varieties, under the assumption that the conjecture
is known for the factors.


Géométrie hyperbolique des formes des corps convexes (avec C. Debin)

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 28 janvier 2019 14:00-15:00 Lieu : Oratrice ou orateur : François Fillastre Résumé :

On introduit une distance sur l’ensemble des corps convexes de l’espace euclidien de dimension n, à  translations et homothéties près. Cet ensemble se plonge isométriquement comme un convexe de l’espace hyperbolique de dimension infinie. La structure lorentzienne ambiante est donnée par une extension de l’aire intrinsèque des corps convexes. On en déduit que l’ensemble des formes des corps convexes (c’est-à -dire les corps convexes à  similitudes près) est muni d’une distance propre de courbure plus grande que -1. Pour les convexes en dimension 3, cet espace est homéomorphe à  l’espace des métriques sur la sphère de courbure positive.


Numerical properties of the canonical class

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 21 janvier 2019 15:30-16:30 Lieu : Oratrice ou orateur : Vlad Lazić Résumé :

I will address the question to which extent properties of the canonical class of a projective variety with mild singularities depend on its numerical class, in light of recent surprising connections between several central conjectures in birational geometry. This is joint work with Thomas Peternell.


Théorème de Torelli global pour les orbifoldes symplectiques irréductibles

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 14 janvier 2019 15:30-16:30 Lieu : Oratrice ou orateur : Grégoire Menet Résumé :

Depuis le théorème de décomposition de Bogomolov, les variétés hyperkählériennes jouent un rôle important en géométrie algébrique, elles peuvent être considérées comme des briques élémentaires dans le projet de classification des variétés kählériennes. En 2011, Verbitsky démontre un outil fondamental à  l’origine de nombreux développements : le théorème de Torelli global. L’idée est de pouvoir retrouver la géométrie de la variété à  partir de la structure de Hodge de son second groupe de cohomologie comme dans le cas des surfaces K3. Une orbifolde est une généralisation de variété constituée par le recollement de quotients d’ouverts de C^n par des groupes finis. Dans cet exposé nous verrons, dans les grandes lignes, comment le théorème de Torelli global peut être étendu au cas des orbifoldes symplectiques irréductibles.


Non-archimedean notions of hyperbolicity

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 14 janvier 2019 14:00-15:00 Lieu : Oratrice ou orateur : Ariyan Javanpeykar Résumé :

A conjecture of Green-Griffiths-Lang predicts that a projective variety of general type does not admit a dense entire curve in the complex analytic topology.
We propose and investigate a non-archimedean analogue of this conjecture in which we replace « dense entire curve in the complex analytic topology » by « dense entire curve in the non-archimedean topology ». This is joint work with Alberto Vezzani.


Groupes de Kac-Moody, le cas affine

Catégorie d’évènement : Groupe de travail Géométrie Date/heure : 14 janvier 2019 10:15-12:00 Lieu : Oratrice ou orateur : Dimitry Kfoury Résumé :

Groupes de type affine

Catégorie d’évènement : Groupe de travail Géométrie Date/heure : 7 janvier 2019 10:15-12:00 Lieu : Oratrice ou orateur : Dimitry Kfoury Résumé :

Groupes maximaux de Kac-Moody

Catégorie d’évènement : Groupe de travail Géométrie Date/heure : 17 décembre 2018 10:15-12:00 Lieu : Oratrice ou orateur : Christoph Baerligea Résumé :

Groupes maximaux de Kac-Moody

Catégorie d’évènement : Groupe de travail Géométrie Date/heure : 10 décembre 2018 10:00-12:00 Lieu : Oratrice ou orateur : Christoph Bärligea Résumé :