Séminaires

A venir

Les principaux séminaires de l’équipe ont lieu le lundi aux horaires suivants :

  • Séminaire de géométrie différentielle : 14h-15h
  • Séminaire de géométrie complexe : 15h30-16h30

Les responsables sont Damian Brotbeck pour la géométrie complexe et Benoit Daniel pour la géométrie différentielle.


Groupes d'automorphismes des surfaces del Pezzo de degré 5

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 10 novembre 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Aurore Boitrel Résumé :
Les surfaces del Pezzo et leurs groupes d’automorphismes jouent un rôle clé dans la classification, à conjugaison près, des sous-groupes du groupe de Cremona du plan projectif. Sur un corps algébriquement clos, elles sont complètement classifiées, de même que le sont leurs groupes d’automorphismes. En particulier, il existe une unique classe d’isomorphismes de surfaces del Pezzo de degré 5 sur un corps algébriquement clos. Nous nous intéresserons dans cet exposé aux surfaces del Pezzo de degré 5 définies sur un corps parfait, auquel cas il existe beaucoup de surfaces supplémentaires. Nous expliquerons comment l’étude de l’action du groupe de Galois sur le graphe des (-1)-courbes nous permet de donner une description par générateurs de leurs groupes d’automorphismes en termes d’automorphismes et de transformations birationnelles.

Spectral properties of symmetrized AMV operators

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 10 novembre 2025 15:30-16:30 Lieu : Oratrice ou orateur : Manuel Dias Résumé :

The symmetrized Asymptotic Mean Value Laplacian \tilde{\Delta}, is obtained as limit of approximating integral operators \tilde{\Delta}_r, and is an extension of the classical Euclidean Laplace operator to the realm of metric measure spaces. We show that in the limit as r->0, as the operators eventually admit isolated eigenvalues defined via min-max procedure  on any compact uniformly locally doubling metric measure space. Then we prove L^2 and spectral convergence of \tilde{\Delta}_r to the Laplace-Beltrami operator of a compact Riemannian manifold, imposing Neumann conditions when the manifold has a non-empty boundary.


Rigidity and Monotonicity of the Hawking Energy on Hawking Surfaces

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 17 novembre 2025 15:30-16:30 Lieu : Oratrice ou orateur : Alejandro Penuela Diaz Résumé :

The Hawking energy is one of the simplest quasi-local energy definitions in general relativity. Despite its simplicity, the Hawking energy has faced challenges due to ambiguities when applied to general surfaces. In this talk, I will present recent results demonstrating that the Hawking energy exhibits key physical and mathematical properties—non-negativity, rigidity,
and monotonicity—when evaluated on a generalization of  area-constrained Willmore surfaces  (Hawking surfaces). In particular such properties hold for area-constrained Willmore surfaces on manifolds with nonnegative scalar curvature.  These results establish Hawking surfaces as a useful tool for evaluating the Hawking energy and reinforce its potential as a meaningful tool for understanding gravitational phenomena.


Groupe de travail de géométrie – Variétés kählériennes compactes uniréglées V

Catégorie d’évènement : Géométrie Date/heure : 21 novembre 2025 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Damian Brotbek Résumé :

Séminaire commun de géométrie

Catégorie d’évènement : Géométrie Date/heure : 5 janvier 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Titre à préciser

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 26 janvier 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Andrei Moroianu Résumé :

Séminaire commun de géométrie

Catégorie d’évènement : Géométrie Date/heure : 2 février 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Titre à préciser

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 9 février 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Laurent Hauswirth Résumé :

Séminaire commun de géométrie

Catégorie d’évènement : Géométrie Date/heure : 2 mars 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Titre à préciser

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 30 mars 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Hiba Bibi Résumé :

Séminaire commun de géométrie

Catégorie d’évènement : Géométrie Date/heure : 4 mai 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d’évènement : Géométrie Date/heure : 1 juin 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d’évènement : Géométrie Date/heure : 6 juillet 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Archives

GdT – o-minimalité – 4ème séance

Catégorie d’évènement : Groupe de travail Géométrie Date/heure : 18 novembre 2019 14:00-15:00 Lieu : Oratrice ou orateur : Mihai-Cosmin Pavel Résumé :

Le théorème de Chow


Lieux de dégénérescence orbitaux

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 4 novembre 2019 15:30-16:30 Lieu : Oratrice ou orateur : Vladimiro Benedetti Résumé :

Dans cet exposé, je vais présenter les lieux de dégénérescence orbitaux.
Ces lieux généralisent les lieux de dégénérescence classiques; étant
donnés des fibrés principaux (ou fibrés vectoriels avec une certaine
structure), ils permettent de construire des variétés projectives
« spéciales ».
Deux outils majeurs permettent de controler les propriétés intrinsèques
des variétés construites (e.g. la positivité du fibré canonique):
l’existence de désingularisations explicites de ces lieux et l’existence
de résolutions localement libres de leurs idéaux. Selon le temps
disponible, je vais présenter ces outils à  l’aide d’exemples concrets et
significatifs.
Il s’agit d’un projet en commun avec Sara Angela Filippini, Laurent
Manivel et Fabio Tanturri.


GdT – o-minimalité – 3ème séance

Catégorie d’évènement : Groupe de travail Géométrie Date/heure : 4 novembre 2019 14:00-15:00 Lieu : Oratrice ou orateur : Damien Mégy Résumé :

Théorème de décomposition en cellules (II)


Bubbling phenomena for Willmore surfaces

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 4 novembre 2019 14:00-15:00 Lieu : Oratrice ou orateur : Nicolas Marque Résumé :

The Willmore energy arises naturally as a measure of how curved an immersed surface in $mathbb{R}^3$ is, with applications in relativity (the Hawking mass). Willmore immersions are critical points of this energy. We will study sequences of Willmore surfaces, which are subject to concentration-compactness i.e. : bubbling phenomena. We will focus on simple minimal bubbles, and detail consequences on the compactness below certain thresholds.


Sur les opérateurs différentiels symétriques

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 21 octobre 2019 15:30-16:30 Lieu : Oratrice ou orateur : Daniel Barlet Résumé :

Let $s_{1}, dots, s_{k}$ be the elementary symmetric functions of the complex variables $x_{1}, dots, x_{k}$.
We say that $F in C[s_{1}, dots, s_{k}]$ is a {trace function} if their exists $f in C[z]$ such that
$F(s_{1}, dots, s_{k}] = sum_{j=1}^{k} f(x_{j})$ for all $s in C^{k}$.
We give an explicit finite family of second order differential operators in the Weyl algebra
$W_{2}:= C[s_{1}, dots, s_{k}]langle frac{partial}{partial s_{1}}, dots, frac{partial}{partial s_{k}}rangle $
which generates the left ideal in $W_{2}$ of partial differential operators killing all trace functions.
The proof uses a theorem for symmetric differential operators analogous
to the usual symmetric functions theorem and the corresponding map for symbols. As a corollary, we obtain for each integer $k$
a regular holonomic system which is a quotient of $W_{2}$ by an explicit left ideal whose local solutions are given by linear
combinations of the branches of the multivalued root of the universal equation of degree $k$:
$z^{k} + sum_{h=1}^{k} (-1)^{h}.s_{h}.z^{k-h} = 0$.


GdT – o-minimalité – 2ème séance

Catégorie d’évènement : Groupe de travail Géométrie Date/heure : 21 octobre 2019 14:00-15:00 Lieu : Oratrice ou orateur : Damien Mégy Résumé :

Théorème de décomposition en cellules (I)


Le feuilletage caractéristique sur une hypersurface verticale dans une variété hyper-kählérienne.

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 14 octobre 2019 15:30-16:30 Lieu : Oratrice ou orateur : Renat Abugaliev Résumé :

Soit Y une hypersurface lisse dans une variété hyper-kählérienne irréductible projective X de dimension 2n et $sigma$ une forme holomorphiquement symplectique sur X. Le feuilletage caractéristique F sur une hypersurface Y est le noyau de la forme symplectique $sigma$ restreinte à  Y. Supposons qu’il existe une fibration lagrangienne $pi:Xto mathbb{P}^n$ et $Y=pi^{-1}D$ pour une hypersurface $D$ dans $mathbb{P}^n$. Je montre que une feuille générale de $F$ est Zariski dense dans une fibre de $pi$.


GdT – o-minimalité – 1ère séance

Catégorie d’évènement : Groupe de travail Géométrie Date/heure : 14 octobre 2019 14:00-15:00 Lieu : Oratrice ou orateur : Benoît Cadorel Résumé :

Hyperbolic Campana's isotriviality conjecture.

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 7 octobre 2019 15:30-16:30 Lieu : Oratrice ou orateur : Ya Deng Résumé :

In 2008 Campana conjectured that a smooth projective family of canonically polarized manifolds over a special manifold (being opposed to general type manifolds) is isotrivial, i.e. any two fibers are isomorphic. This conjecture was proven by Taji in 2016. In this talk I will present a hyperbolic version of Campana’s isotriviality conjecture: a smooth family of canonically polarized or polarized Calabi-Yau manifolds over a hyperbolically special complex manifold (i.e. its Kobayashi pseudo distance vanishes identically) is necessarily isotrivial. This result is indeed inspired by another conjecture of Campana: a complex manifold is special if and only if it is hyperbolically special, and thus provides some (indirect) evidence to this conjecture.


Group invariant solutions of certain partial differential equations

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 7 octobre 2019 14:00-15:00 Lieu : Oratrice ou orateur : Jaime Ripoll Résumé :

This talk is about a joint work, still in progress, with Friedrich Tomi (Heidelberg University, Germany) where one investigates the existence of solutions which are invariant by a Lie subgroup of the isometry group of a Riemannian manifold $M$; acting freely and properly on $M$, to the Dirichlet problem of a certain class of partial differential equations on $M$: Typical examples of this class are the $p$-Laplacian PDE and the minimal surface equation. This approach may reduce the study of the Dirichlet problem in unbounded to bounded domains and also allows to prove the existence of solutions on domains which are not necessarily mean convex in the case of the minimal surface equation for certain boundary data.