Exposés à venir
A venir
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 27 février 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Chantal David (Université Concordia, Montréal) Résumé :Angel Roman (Washington University) -- titre à venir
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 6 mars 2025 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Angel Roman Résumé :A venir
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 6 mars 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Alina Ostafe (UNSW, Sydney) Résumé :À venir
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 20 mars 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Seth Hardy (Warwick) Résumé :A venir
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 24 avril 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Alexandre Bailleul (ENS Paris-Saclay) Résumé :Francesco Cattafi (Würzburg) -- titre à venir
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 15 mai 2025 14:15-15:15 Lieu : Salle de réunion Metz (ARC-027) Oratrice ou orateur : Francesco Cattafi (Würzburg) Résumé :À venir
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 15 mai 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Athanasios Sourmelidis (Lille) Résumé :Antonio Miti (Rome) -- titre à venir
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 5 juin 2025 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Antonio Miti (Rome) Résumé :Archives
Ensembles de formes linéaires de complexité maximale
Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 3 février 2022 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Michel Waldschmidt (Sorbonne Université) Résumé :Dans un travail en commun avec Michael Kaminski et Igor Shparlinski (arXiv:2110.04657), nous donnons des exemples explicites d’ensembles de $m$ formes linéaires en $n$ variables sur le corps des nombres rationnels, dont le calcul nécessite $m(n-1)$ additions.
Quantification de $\mathrm{GL}_n(\mathbb{R})\ltimes \mathbb{R}^n$ (et de ses analogues)
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 3 février 2022 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Victor Gayral (Reims) Résumé :Questions d'équirépartition de sommes exponentielles indexées par un sous-groupe
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 27 janvier 2022 14:00-15:00 Lieu : Salle Döblin Oratrice ou orateur : Théo Untrau (IMB, Bordeaux) Résumé :On s’intéresse à des sommes exponentielles habituellement indexées par un système de représentants
des entiers inversibles modulo p, ou des inversibles modulo une puissance d’un nombre premier p.
Cependant, au lieu de regarder ces sommes complètes, on les restreint en les indexant seulement
par un sous-groupe d’ordre d fixé. Lorsque p tend vers l’infini en respectant certaines conditions de
congruence qui assurent l’existence d’un unique sous-groupe d’ordre d, on démontre que nos
familles de sommes exponentielles s’équirépartissent dans certaines régions du plan complexe
décrites comme l’image d’un tore par un polynôme de Laurent relativement explicite. Dans un second temps, on montre que l’on peut également restreindre le paramètre indexant la famille de sommes à ne parcourir que de très petits sous-groupes des classes inversibles modulo p, sans affecter le résultat d’équirépartition.
GT "Primes as sums of Fibonacci numbers" (#4)
Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 20 janvier 2022 15:10-16:10 Lieu : Salle Döblin Oratrice ou orateur : Thomas Stoll (IECL) Résumé :Vaaler (II)
GT "Primes as sums of Fibonacci numbers" (#3)
Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 20 janvier 2022 15:10-16:10 Lieu : Salle Döblin Oratrice ou orateur : Manfred Madritsch (IECL) Résumé :Normes de Gowers.
Limites d'orbites adjointes et approximation d'orbites nilpotentes dans les algèbre de Lie réelles simples
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 20 janvier 2022 14:15-15:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lucas Fresse (IECL) Résumé :Manin's conjecture for singular cubic hypersurfaces
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 20 janvier 2022 14:00-15:00 Lieu : Salle Döblin Oratrice ou orateur : Wen Tingting (Paris 13) Résumé :Le cône de Horn pour le pléthysme et formules de multiplicativité
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 13 janvier 2022 14:15-15:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pierre-Emmanuel Chaput Résumé :Compactifications de Martin des immeubles affines (en commun avec Bartosz Trojan)
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 16 décembre 2021 14:15-15:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Bertrand Rémy (ENS Lyon) Résumé :Les notions de base sur les immeubles affines seront introduites : ces espaces sont des complexes cellulaires attachés à des groupes de Lie non archimédiens pour mieux les comprendre. Ensuite, quelques procédures classiques pour compacter ces espaces seront décrites, par analogie avec les espaces symétriques riemanniens non compacts. Ce sera enfin l’occasion d’expliquer en quel sens les compactifications de Martin fournissent un moyen naturel et analytique d’obtenir des compactifications « à gros bord » (obtenues plus artificiellement auparavant).
Réseaux sur les entiers de Gauss et fractions continues complexes
Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 16 décembre 2021 14:00-15:00 Lieu : Salle Döblin Oratrice ou orateur : Nicolas Chevallier (Université de Haute Alsace) Résumé :L’objectif est de construire un algorithme de fraction continue complexe trouvant toutes les meilleures approximations diophantiennes d’un nombre complexe. En utilisant la suite des vecteurs minimaux d’un réseau de $\mathbb{C}^2$ sur l’anneau des entiers de Gauss, nous obtenons un algorithme défini sur une sous-variété de $\mathrm{SL}(2,\mathbb{C})$. La correspondance entre les vecteurs minimaux et les meilleures approximations diophantiennes garantit que notre algorithme atteint son but. Un sous-produit de l’algorithme est la meilleure constante pour la version complexe du théorème de Dirichlet sur les approximations des nombres complexes par les quotients de deux entiers gaussiens.