Exposés à venir
Grands ensembles évitant certaines configurations
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 24 avril 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Alexandre Bailleul (ENS Paris-Saclay) Résumé :En se laissant guider par l’exemple des ensembles de Sidon (ensembles de nombres dont les sommes de deux éléments sont uniques, très étudiés en combinatoire additive), je présenterai des résultats récents, en collaboration avec R. Riblet, où des techniques de théorie des ensembles permettent de construire des ensembles « grands » en certains sens (cardinalité, mesure ou dimension) tout en étant « épars » car évitant des configurations prescrites (pas de relation linéaire, ou ne contenant pas de parallélogramme, etc.). Des questions subtiles en lien avec l’axiome du choix seront évoquées.
Pseudogroups and geometric structures
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 15 mai 2025 14:15-15:15 Lieu : Salle de réunion Metz (ARC-027) Oratrice ou orateur : Francesco Cattafi (Würzburg) Résumé :This philosophy can be made precise at various levels of generality (depending on the definition of « geometric structure ») and using different tools/methods. In this talk I will present some aspects of a new framework, which includes previous formalisms (e.g. G-structures or Cartan geometries) and allows us to prove integrability theorems.
A main novelty of this point of view consists of the fact that it uncovers the (beautiful!) hidden structures behind Lie pseudogroups and geometric structures. Indeed, the relevant objects which make this approach work are Lie groupoids endowed with a multiplicative « PDE-structure », their principal actions, and the related Morita theory. Poisson geometry provides the guiding principle to understand those objects, which are directly inspired from, respectively, symplectic groupoids, principal Hamiltonian bundles, and symplectic Morita equivalence.
This is based on a forthcoming book written jointly with Luca Accornero, Marius Crainic and María Amelia Salazar.
A venir
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 15 mai 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Athanasios Sourmelidis (CNRS, Lille) Résumé :Antonio Miti – titre à venir
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 5 juin 2025 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Antonio Miti (Rome) Résumé :Archives
Conjecture de Fried pour des fibrés admissibles
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 1 décembre 2022 14:00-15:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Shu Shen (Jussieu) Résumé :La relation entre le spectre du laplacien et les géodésiques fermées sur une variété riemannienne compacte est l’un des thèmes centraux de la géométrie différentielle. Fried a conjecturé que la torsion analytique, qui est un produit alterné de déterminants régularisés des laplaciens, est égale à la valeur en zéro de la fonction zêta dynamique. Dans cet exposé, je montrerai la conjecture de Fried sur des espaces localement symétriques tordus par un fibré vectoriel plat acyclique obtenu par une représentation du groupe de Lie sous-jacent. Cela généralise les résultats de moi-même pour les fibrés unitaires, et les résultats de Brocker, Muller et Wotzker sur les variétés hyperboliques.
Reconstituer la genèse des Éléments de mathématique de Bourbaki : une enquête au croisement de l’archivistique et de l’histoire des mathématiques.
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 24 novembre 2022 14:30-15:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Christophe Eckes (Archives Poincaré, Université de Lorraine) Résumé :Les Éléments de mathématique désignent une vaste entreprise éditoriale menée par le groupe Nicolas Bourbaki sur des thématiques aussi diverses que la théorie des ensembles, l’algèbre, la topologie, les espaces vectoriels topologiques, l’intégration ou encore les groupes et les algèbres de Lie. Les premiers fascicules des Éléments paraissent ponctuellement à la fin des années 1930 et durant la période de l’Occupation, avant de faire l’objet de publications régulières à partir de 1947. Dans le cadre de cet exposé, nous reviendrons tout d’abord sur les premières années d’existence du groupe afin de comprendre comment cette entreprise est née. Nous dresserons ensuite un état des lieux des archives disponibles permettant de documenter la genèse des Éléments de mathématique, ce qui nous conduira à mettre en exergue certaines pièces issues du fonds Jean Delsarte qui est conservé à la bibliothèque de l’Institut Élie Cartan. Les archives du groupe Bourbaki sont essentiellement composées de deux classes de documents : des Rédactions qui documentent les états intermédiaires dans la genèse d’un fascicule des Éléments de mathématique et les numéros du Journal de Bourbaki qui contribuent à comprendre comment ces Rédactions ont été discutées, critiquées et révisées. Nous reviendrons sur les précautions de méthode qui s’imposent pour étudier et relier ces deux grandes classes de documents. Enfin, nous présenterons succinctement l’état de nos recherches sur les premières rédactions Bourbaki dévolues aux groupes et aux algèbres de Lie.
Calcul explicite de la paramétrisation modulaire sur les corps de fonctions par les courbes modulaires de Drinfeld
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 17 novembre 2022 14:30-15:30 Lieu : Oratrice ou orateur : Valentin Petit Résumé :La paramétrisation modulaire dans le cas des corps de fonctions est remarquablement différente du revêtement modulaire classique sur le corps des nombres complexes et fait appel à de nombreux outils théoriques. \\
La situation est la suivante: soit $q$ une puissance d’un nombre premier, et soit $\mathbb{F}_q$ un corps à $q$ éléments. Soit $E$ une courbe elliptique non-isotriviale définie sur $\mathbb{F}_q(T)$ par une équation de Weierstrass de la forme
$$E\colon y^2+a_1xy+a_3y=x^3+a_2x^2+a_4x+a_6, \quad a_i \in \mathbb{F}_q[T],$$
de mauvaise réduction multiplicative en la place $\infty=1/T$.
Alors la paramétrisation modulaire est une application rationnelle $\phi \colon \overline{M}_\Gamma \rightarrow E$, où $\overline{M}_\Gamma$ est la courbe modulaire de Drinfeld. Pour la construction de cette application nous avons besoin d’étudier les arbres de Bruhat-Tits et les fonctions thêta holomorphes.On s’intéressera plus particulièrement au calcul de l’image des pointes de $\overline{M}_\Gamma$ par $\phi$. Les résultats seront illustrés à travers quelques exemples.
Points rationnels sur une intersection de formes diagonales
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 10 novembre 2022 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Olivier Robert (Université JeanMonnet, Saint Étienne; Institut Camille Jordan) Résumé :On considère des intersections de formes diagonales à coefficients entiers de degrés distincts. Nous établissons une formule asymptotique pour le nombre N(X) des points rationnels de hauteur au plus X sur ces variétés. La preuve utilise la méthode de Hardy-Littlewood (dite Méthode du Cercle) et des avancées récentes sur le système de Vinogradov. Nous établissons également un résultat plus fin pour un choix particulier de degrés, en utilisant une technique due à Wooley et une estimation de sommes d’exponentielles issue d’une approche récente de la méthode de van der Corput. Les résultats présentés ici font l’objet d’un travail en commun avec S. Boyer.
Une extension probabiliste de la suite d’Oldenburger-Kolakoski
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 20 octobre 2022 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Irène Marcovici (IECL) et Damien Jamet (LORIA) Résumé :La suite d’Oldenburger-Kolakoski est l’unique suite infinie sur l’alphabet {1,2} qui commence par un 1 et est un point fixe de l’application de codage par plage. Dans cet exposé, nous prendrons un peu de recul par rapport à cette suite bien connue et très étudiée, en introduisant de l’aléa dans le choix des lettres écrites. Cela nous permettra de montrer des résultats portant sur la convergence de la densité de 1 dans les suites ainsi construites. Dans le cas où les lettres sont choisies selon une suite i.i.d. de variables aléatoires ou selon une chaîne de Markov, la densité moyenne de 1 converge. De plus, dans le cas i.i.d., nous arrivons même à démontrer que la densité converge presque sûrement. Il s’agit d’un travail réalisé conjointement par Chloé Boisson, Damien Jamet, et Irène Marcovici.
Une famille de self-maps holomorphes du disque unité.
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 20 octobre 2022 14:00-15:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Jean-Marc Sac-Épée Résumé :Nous donnons une caractérisation des ensembles $D_p (1 < p < 2)$ des nombres complexes $c$ tels que $z\mapsto \frac{1+z}{2}+c\left(\frac{1-z}{2}\right)^{p}$ soit une self-map du disque unité fermé, et nous montrons que ces ensembles sont croissants en fonction de $p$.
Les fonctions polyhomogènes et les calculs pseudo-différentiels de Beals/Greiner vs Van Erp/Yuncken
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 13 octobre 2022 13:30-14:30 Lieu : Salle de séminaires Metz Oratrice ou orateur : Nathan Couchet (Clermont-Ferrand) Résumé :Dans la première moitié de l’exposé nous établirons un premier théorème à savoir que dans le contexte des dilatations, tout symbole classique/poly-homogène a(x,\xi) est la restriction en t=1 d’une fonction homogène modulo Schwartz u(x,\xi,t), vue dans une dimension supérieure.
La seconde moitié de l’exposé fera le pont entre le calcul pseudo-différentiel groupoïdal de Yuncken et Van Erp datant de 2017, dans lequel EvY définissent un calcul pseudo-différentiel grâce aux distributions r-fibrées sur le groupoïde tangent généralisé d’Alain Connes, et les travaux de Beals et Greiner datant de 1983, dans lesquels BG définissent un calcul pseudo-différentiel dans le cadre des variétés d’Heisenberg. Un second théorème que nous avons obtenu montre que ces deux théories coïncident.
Pseudodifferential calculus using generalized fixed point algebras
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 6 octobre 2022 14:00-15:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Eske Ewert (Hannover) Résumé :The principal symbol of a pseudodifferential operator is homogeneous and shows, therefore, a certain invariance under the $\mathbb R_{>0}$-action by scaling.The scaling action can be extended to the so called zoom action of $\mathbb R_{>0}$ on the tangent groupoid. In this talk, I will explain why order zero pseudodifferential operators can be viewed as generalized fixed points of the zoom action in the sense of Rieffel.
This method is applicable in more general situations, for example for filtered manifolds. Here, we recover the order zero pseudodifferential extension by van Erp and Yuncken. Our approach allows to compute the spectrum of the noncommutative symbol algebra. This gives a Fredholm criterion for pseudodifferential operators in this calculus in terms of a Rockland condition.
Complexe BGG et KK-théorie de Kasparov
Catégorie d’évènement : Analyse et théorie des nombres Date/heure : 22 septembre 2022 14:15-15:30 Lieu : Salle de séminaires Metz Oratrice ou orateur : Pierre Julg Résumé :Depuis les années 1980 le problème de la démonstration de la conjecture de Baum-Connes à coefficients pour les groupes semisimples a conduit Kasparov et ses émules à s’intéresser au complexe BGG (Bernstein–Gelfand–Gelfand) associé aux espaces de drapeaux.
Nous expliquerons, dans le cas du rang réel 1, comment ce complexe donne un module de Fredholm qui réalise l’élément gamma de Kasparov et devrait permettre de démontrer la conjecture.
Quelques problèmes ouverts sur des familles de suites binaires
Catégorie d’évènement : Analyse et théorie des nombres Date/heure : 23 juin 2022 15:15-16:15 Lieu : Salle Döblin Oratrice ou orateur : Shalom Eliahou (Université du Littoral Côte d’Opale) Résumé :Dans cet exposé, on considérera des familles finies de suites binaires (1 et -1) de même longueur finie n dont les coefficients de corrélation satisfont quelques conditions élémentaires. La question de l’existence de telles familles, et de leur construction, donne lieu à divers problèmes ouverts, avec des ramifications tant théoriques (combinatoire, algèbre, théorie des nombres, etc) qu’appliquées (codes correcteurs, spectrométrie, radars, etc). On se penchera plus spécifiquement sur trois ou quatre problèmes typiques dans ce cadre.