Séminaires

Exposés à venir

Poisson bundles over unordered configurations

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 10 juillet 2025 14:00-15:00 Lieu : Amphithéâtre Hedy Lamarr – UFR MIM – Metz Oratrice ou orateur : Alessandra Frabetti (Lyon) Résumé :

We construct a Poisson algebra bundle whose distributional sections are suitable to represent multilocal observables in classical field theory. To do this, we work with vector bundles over the unordered configuration space of a manifold M and consider the structure of a 2-monoidal category given by the usual (Hadamard) tensor product of bundles and a new (Cauchy) tensor product which provides a symmetrized version of the usual external tensor product of vector bundles on M.


Archives

Les fonctions polyhomogènes et les calculs pseudo-différentiels de Beals/Greiner vs Van Erp/Yuncken

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 13 octobre 2022 13:30-14:30 Lieu : Salle de séminaires Metz Oratrice ou orateur : Nathan Couchet (Clermont-Ferrand) Résumé :
Le but de cet exposé est de présenter notre futur article scindé en deux résultats.

Dans la première moitié de l’exposé nous établirons un premier théorème à savoir que dans le contexte des dilatations, tout symbole classique/poly-homogène a(x,\xi) est la restriction en t=1 d’une fonction homogène modulo Schwartz u(x,\xi,t), vue dans une dimension supérieure.

La seconde moitié de l’exposé fera le pont entre le calcul pseudo-différentiel groupoïdal de Yuncken et Van Erp datant de 2017, dans lequel EvY définissent un calcul pseudo-différentiel grâce aux distributions r-fibrées sur le groupoïde tangent généralisé d’Alain Connes, et les travaux de Beals et Greiner datant de 1983, dans lesquels BG définissent un calcul pseudo-différentiel dans le cadre des variétés d’Heisenberg. Un second théorème que nous avons obtenu montre que ces deux théories coïncident.

Enfin, si le temps le permet, nous discuterons d’un nouveau projet de recherche autour du résidu de Wodzicki en lien avec le calcul groupoïdal.

Pseudodifferential calculus using generalized fixed point algebras

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 6 octobre 2022 14:00-15:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Eske Ewert (Hannover) Résumé :

The principal symbol of a pseudodifferential operator is homogeneous and shows, therefore, a certain invariance under the $\mathbb R_{>0}$-action by scaling.The scaling action can be extended to the so called zoom action of $\mathbb R_{>0}$ on the tangent groupoid. In this talk, I will explain why order zero pseudodifferential operators can be viewed as generalized fixed points of the zoom action in the sense of Rieffel.
This method is applicable in more general situations, for example for filtered manifolds. Here, we recover the order zero pseudodifferential extension by van Erp and Yuncken. Our approach allows to compute the spectrum of the noncommutative symbol algebra. This gives a Fredholm criterion for pseudodifferential operators in this calculus in terms of a Rockland condition.


Complexe BGG et KK-théorie de Kasparov

Catégorie d’évènement : Analyse et théorie des nombres Date/heure : 22 septembre 2022 14:15-15:30 Lieu : Salle de séminaires Metz Oratrice ou orateur : Pierre Julg Résumé :

Depuis les années 1980 le problème de la démonstration de la conjecture de Baum-Connes à coefficients pour les groupes semisimples a conduit Kasparov et ses émules à s’intéresser au complexe BGG (Bernstein–Gelfand–Gelfand) associé aux espaces de drapeaux.

Nous expliquerons, dans le cas du rang réel 1, comment ce complexe donne un module de Fredholm qui réalise l’élément gamma de Kasparov et devrait permettre de démontrer la conjecture.


Quelques problèmes ouverts sur des familles de suites binaires

Catégorie d’évènement : Analyse et théorie des nombres Date/heure : 23 juin 2022 15:15-16:15 Lieu : Salle Döblin Oratrice ou orateur : Shalom Eliahou (Université du Littoral Côte d’Opale) Résumé :

Dans cet exposé, on considérera des familles finies de suites binaires (1 et -1) de même longueur finie n dont les coefficients de corrélation satisfont quelques conditions élémentaires. La question de l’existence de telles familles, et de leur construction, donne lieu à divers problèmes ouverts, avec des ramifications tant théoriques (combinatoire, algèbre, théorie des nombres, etc) qu’appliquées (codes correcteurs, spectrométrie, radars, etc). On se penchera plus spécifiquement sur trois ou quatre problèmes typiques dans ce cadre.


Sums of Kloosterman sums with multiplicative coefficients

Catégorie d’évènement : Analyse et théorie des nombres Date/heure : 23 juin 2022 14:00-15:00 Lieu : Salle Döblin Oratrice ou orateur : Igor Shparlinski (University of New South Wales) Résumé :

We consider Kloosterman sums
$$
K_p(n) = \sum_{x=1}^{p-1} \exp(2 \pi i (nx + x^{-1})/p)
$$
modulo a prime $p$ and define their sums
$$
M_p(N) = \sum_{n \le N} \mu(n) \mathcal{K}_p(n) \qquad \mbox{and}\quad T_{\nu,p}(N) = \sum_{n \le N} \tau_\nu(n) \mathcal{K}_p(n)
$$
twisted by the Möbius function $\mu(n)$ and by the $\nu$-fold divisor function $\tau_\nu(n)$. Fouvry, Kowalski & Michel (2014) and Kowalski, Michel & Sawin (2018) improved the trivial bounds
$$
M_p(N) \ll N \qquad \mbox{and}\quad T_{\nu,p}(N) \ll N (\log N)^{\nu -1}.
$$
for $N \ge p^{3/4+\varepsilon}$ and $N \ge p^{2/3+\varepsilon}$, respectively (for any fixed $\varepsilon>0$). We will explain the ideas of the recent joint work with Maxim Korolev (2020) where both these thresholds are lowered down to $N \ge p^{1/2+\varepsilon}$. We will also discuss some open questions.


Conjecture de Manin—Peyre pour une famille de solides admettant des fibrations quadriques

Catégorie d’évènement : Analyse et théorie des nombres Date/heure : 23 juin 2022 11:00-12:00 Lieu : Oratrice ou orateur : Zhizhong Huang (IST Austria) Résumé :

Manin et ses collaborateurs ont conjecturé des formules asymptotiques pour le nombres des points de hauteur anticanonique bornée sur les variétés de Fano. Nous démontrons cette conjecture pour la famille de variétés définies par l’équation $$L_1(x_1,x_2)y_1^2+L_2(x_1,x_2)y_2^2+L_3(x_1,x_2)y_3^2+L_4(x_1,x_2)y_4^2=0,$$ où $L_i$ sont des formes bilinéaires deux à deux non-proportionnelles. La constante arithmétique apparaissant dans le terme principal coïncide avec celle conjecturée par Peyre. La démonstration utilise divers outils de la théorie analytique des nombres. Il s’agit d’un travail en commun avec D. Bonolis et T. Browning.


Well-behaved Beurling number systems

Catégorie d’évènement : Analyse et théorie des nombres Date/heure : 22 juin 2022 11:00-12:00 Lieu : Salle Döblin Oratrice ou orateur : Frederik Broucke (Ghent University) Résumé :
A Beurling number system generalizes the multiplicative structure of the classical primes and integers. It consists of a non-decreasing unbounded sequence of real numbers $\{p_j\}_{j=1}^{\infty}$ with $p_1>1$, called the generalized primes, and the sequence of generalized integers $\{n_k\}_{k=0}^{\infty}$ which consists of the number 1 and all possible products of (powers of) the $p_j$. With such a system, one associates counting functions $\pi(x)$ and $N(x)$, counting the number of generalized primes and integers, respectively, below $x$. The primes satisfy the PNT if $\pi(x) \sim x/\log x$, and the integers have a density if $N(x) \sim \rho x$ for some positive $\rho$. If in these relations one has an error term of the form $O(x^a)$ for some $a<1$, one calls the primes or integers well-behaved.
In this talk, I will discuss various properties of these classes of Beurling systems, including extremal examples and omega results. I also discuss systems for which the primes and integers are simultaneously well-behaved. Finally, I will talk about some open problems.

Optimality for Tauberian theorems

Catégorie d’évènement : Analyse et théorie des nombres Date/heure : 22 juin 2022 10:00-11:00 Lieu : Salle Döblin Oratrice ou orateur : Gregory Debruyne (Ghent University) Résumé :

One version of the Ingham-Karamata theorem states that for each slowly oscillating function $\tau$ whose Laplace transform admits an analytic continuation beyond the line $\Re s \: s = 0$ must obey the asymptotic law $\tau(x) = o(1)$. This theorem is a cornerstone in Tauberian theory and has plenty of applications in number theory; one of the quickest proofs of the Prime Number Theorem passes through this theorem. 

We shall show that the decay rate $o(1)$ in the Ingham-Karamata theorem is optimal even if one assumes analytic continuation of the Laplace transform up to a larger halfplane. The attractive proof is based on the open mapping theorem. 


De l’identité de B.-Reutenauer à la conjecture de Fraenkel et Simpson

Catégorie d’évènement : Analyse et théorie des nombres Date/heure : 17 juin 2022 11:00-12:00 Lieu : Salle Döblin Oratrice ou orateur : Srečko Brlek (UQAM) Résumé :

Une identité remarquable relie deux mesures de complexité sur les mots: complexité en facteurs $C(n)$ et complexité palindromique $P(n)$. Il s’avère qu’elle est aussi valide quand on remplace la complexité palindromique $P(n)$ par celle des facteurs carrés $S(n)$. Ce résultat, facile à établir pour les mots finis, suggère cependant un lien avec la conjecture sur le nombre de facteurs carrés distincts dans un mot : les graphes de Rauzy y jouent un rôle essentiel.


Combinatoire des mots et théorie de Markoff

Catégorie d’évènement : Analyse et théorie des nombres Date/heure : 16 juin 2022 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Christophe Reutenauer (UQAM) Résumé :

La théorie de Markoff, élaborée par lui pour les formes quadratiques, a été étendue par Hurwitz et ses successeurs, aux approximations des réels par des rationnels. Elle concerne les nombres qui sont « mal approximés », le plus mauvais d’entre eux étant le nombre d’or. On verra comment certains mots sur un alphabet à deux lettres, appelés mots de Christoffel, s’introduisent naturellement dans cette théorie.


7 8 9 10 11 12 13 14 15 16 17 18