Séminaires

Exposés à venir

Surfaces minimales et surfaces de Ricci

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 28 novembre 2024 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Benoît Daniel (IÉCL) Résumé :

Les surfaces minimales sont les surfaces qui sont points critiques de la fonctionnelle d’aire à bord fixé. Elles sont caractérisées par le fait que leur courbure moyenne est nulle. Un problème posé par Ricci est de déterminer quelles surfaces riemanniennes peuvent être immergées (localement) isométriquement comme surfaces minimales de l’espace euclidien de dimension 3. Ricci a donné une caractérisation dans le cas où la surface est à courbure strictement négative. A. et S. Moroianu ont donné une caractérisation complète sans cette hypothèse et ont introduit la notion de surface de Ricci. Nous verrons des généralisations de cette notion, nous intéresserons aux surfaces de Ricci généralisées compactes et verrons le lien avec les surfaces à courbure constante et singularités coniques. Il s’agit d’un travail en commun avec Yiming Zang.


Un crible minorant effectif pour les entiers friables

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 28 novembre 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Adrien Mounier (Aix-Marseille Université) Résumé :

Soient $\mathcal{A}$ un ensemble fini d’entiers naturels non-nuls et $y \geq 1$. Nous donnons une minoration effective du cardinal de l’ensemble $\{n\in\mathcal{A} ; p|n \Rightarrow p \leq y\}$ sous la condition d’une bonne connaissance du niveau de répartition de l’ensemble $\mathcal{A}$. Quelques conséquences seront ensuite abordées, dont une application aux valeurs friables de polynômes ou de formes binaires à coefficients entiers, puis une application aux entiers friables voisins.


Journée à l'honneur de David Vogan

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 5 décembre 2024 00:00-23:59 Lieu : Oratrice ou orateur : Résumé :

Une version effective du théorème des nombres premiers de Lu

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 5 décembre 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Vincent Gozé (Université du Littoral Côte d'Opale) Résumé :

Soit $\pi(x)$ le nombre de nombres premiers dans l’intervalle $[1,x]$. Nous savons depuis Euclide que $\pi(x)$ tend vers l’infini, mais à quelle vitesse ?  La réponse à cette question fut obtenue pour la première fois en 1896 par Jacques Hadamard et Charles-Jean de la Vallée Poussin qui démontrèrent, de manière indépendante, le théorème des nombres premiers: \[\pi(x)\sim \frac{x}{\log x}\quad(x\to \infty).\]
La démonstration de Hadamard et La Vallée Poussin utilise principalement les propriétés de la fonction zêta de Riemann et donc l’analyse complexe. Ce n’est qu’en 1949 qu’Erdős et Selberg publièrent indépendamment la première démonstration élémentaire (utilisant uniquement l’analyse réelle) du théorème des nombres premiers. Dans cet exposé, nous présenterons le développement historique des démonstrations élémentaires du théorème des nombres premiers puis nous donnerons une version effective du théorème des nombres premiers de Lu qui, à ce jour, donne le meilleur terme d’erreur en utilisant des méthodes élémentaires.


Pause pour arbre de Noël GNC à Orléans

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 12 décembre 2024 14:15-15:15 Lieu : Oratrice ou orateur : Résumé :

Sur une généralisation des puissances d'un entier (``powered numbers''). Application à un problème additif.

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 12 décembre 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Olivier Robert (Institut Camille Jordan) Résumé :

La notion de fonction puissance d’un nombre entier, introduite par Mazur (2000) fait intervenir le noyau (ou radical) d’un entier. Cette fonction lui  permet de définir une généralisation des puissances (« powered numbers »). Après avoir rappelé des résultats récents sur le noyau d’un entier, nous présenterons des résultats nouveaux sur la fonction de répartition des puissances généralisées, ainsi que sur un problème additif concernant la représentation d’un entier comme somme de puissances généralisées. Ce travail a été réalisé en collaboration avec J. Brüdern.


Pierre Bieliavksy -- titre à venir

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 13 février 2025 14:14-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Pierre Bieliavsky (Louvain-la-Neuve) Résumé :

Archives

Une extension probabiliste de la suite d’Oldenburger-Kolakoski

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 20 octobre 2022 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Irène Marcovici (IECL) et Damien Jamet (LORIA) Résumé :

La suite d’Oldenburger-Kolakoski est l’unique suite infinie sur l’alphabet {1,2} qui commence par un 1 et est un point fixe de l’application de codage par plage. Dans cet exposé, nous prendrons un peu de recul par rapport à cette suite bien connue et très étudiée, en introduisant de l’aléa dans le choix des lettres écrites. Cela nous permettra de montrer des résultats portant sur la convergence de la densité de 1 dans les suites ainsi construites. Dans le cas où les lettres sont choisies selon une suite i.i.d. de variables aléatoires ou selon une chaîne de Markov, la densité moyenne de 1 converge. De plus, dans le cas i.i.d., nous arrivons même à démontrer que la densité converge presque sûrement. Il s’agit d’un travail réalisé conjointement par Chloé Boisson, Damien Jamet, et Irène Marcovici.


Une famille de self-maps holomorphes du disque unité.

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 20 octobre 2022 14:00-15:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Jean-Marc Sac-Épée Résumé :

Nous donnons une caractérisation des ensembles $D_p (1 < p < 2)$ des nombres complexes $c$ tels que $z\mapsto \frac{1+z}{2}+c\left(\frac{1-z}{2}\right)^{p}$ soit une self-map du disque unité fermé, et nous montrons que ces ensembles sont croissants en fonction de $p$.


Les fonctions polyhomogènes et les calculs pseudo-différentiels de Beals/Greiner vs Van Erp/Yuncken

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 13 octobre 2022 13:30-14:30 Lieu : Salle de séminaires Metz Oratrice ou orateur : Nathan Couchet (Clermont-Ferrand) Résumé :
Le but de cet exposé est de présenter notre futur article scindé en deux résultats.

Dans la première moitié de l’exposé nous établirons un premier théorème à savoir que dans le contexte des dilatations, tout symbole classique/poly-homogène a(x,\xi) est la restriction en t=1 d’une fonction homogène modulo Schwartz u(x,\xi,t), vue dans une dimension supérieure.

La seconde moitié de l’exposé fera le pont entre le calcul pseudo-différentiel groupoïdal de Yuncken et Van Erp datant de 2017, dans lequel EvY définissent un calcul pseudo-différentiel grâce aux distributions r-fibrées sur le groupoïde tangent généralisé d’Alain Connes, et les travaux de Beals et Greiner datant de 1983, dans lesquels BG définissent un calcul pseudo-différentiel dans le cadre des variétés d’Heisenberg. Un second théorème que nous avons obtenu montre que ces deux théories coïncident.

Enfin, si le temps le permet, nous discuterons d’un nouveau projet de recherche autour du résidu de Wodzicki en lien avec le calcul groupoïdal.

Pseudodifferential calculus using generalized fixed point algebras

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 6 octobre 2022 14:00-15:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Eske Ewert (Hannover) Résumé :

The principal symbol of a pseudodifferential operator is homogeneous and shows, therefore, a certain invariance under the $\mathbb R_{>0}$-action by scaling.The scaling action can be extended to the so called zoom action of $\mathbb R_{>0}$ on the tangent groupoid. In this talk, I will explain why order zero pseudodifferential operators can be viewed as generalized fixed points of the zoom action in the sense of Rieffel.
This method is applicable in more general situations, for example for filtered manifolds. Here, we recover the order zero pseudodifferential extension by van Erp and Yuncken. Our approach allows to compute the spectrum of the noncommutative symbol algebra. This gives a Fredholm criterion for pseudodifferential operators in this calculus in terms of a Rockland condition.


Complexe BGG et KK-théorie de Kasparov

Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 22 septembre 2022 14:15-15:30 Lieu : Salle de séminaires Metz Oratrice ou orateur : Pierre Julg Résumé :

Depuis les années 1980 le problème de la démonstration de la conjecture de Baum-Connes à coefficients pour les groupes semisimples a conduit Kasparov et ses émules à s’intéresser au complexe BGG (Bernstein–Gelfand–Gelfand) associé aux espaces de drapeaux.

Nous expliquerons, dans le cas du rang réel 1, comment ce complexe donne un module de Fredholm qui réalise l’élément gamma de Kasparov et devrait permettre de démontrer la conjecture.


Quelques problèmes ouverts sur des familles de suites binaires

Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 23 juin 2022 15:15-16:15 Lieu : Salle Döblin Oratrice ou orateur : Shalom Eliahou (Université du Littoral Côte d'Opale) Résumé :

Dans cet exposé, on considérera des familles finies de suites binaires (1 et -1) de même longueur finie n dont les coefficients de corrélation satisfont quelques conditions élémentaires. La question de l’existence de telles familles, et de leur construction, donne lieu à divers problèmes ouverts, avec des ramifications tant théoriques (combinatoire, algèbre, théorie des nombres, etc) qu’appliquées (codes correcteurs, spectrométrie, radars, etc). On se penchera plus spécifiquement sur trois ou quatre problèmes typiques dans ce cadre.


Sums of Kloosterman sums with multiplicative coefficients

Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 23 juin 2022 14:00-15:00 Lieu : Salle Döblin Oratrice ou orateur : Igor Shparlinski (University of New South Wales) Résumé :

We consider Kloosterman sums
$$
K_p(n) = \sum_{x=1}^{p-1} \exp(2 \pi i (nx + x^{-1})/p)
$$
modulo a prime $p$ and define their sums
$$
M_p(N) = \sum_{n \le N} \mu(n) \mathcal{K}_p(n) \qquad \mbox{and}\quad T_{\nu,p}(N) = \sum_{n \le N} \tau_\nu(n) \mathcal{K}_p(n)
$$
twisted by the Möbius function $\mu(n)$ and by the $\nu$-fold divisor function $\tau_\nu(n)$. Fouvry, Kowalski & Michel (2014) and Kowalski, Michel & Sawin (2018) improved the trivial bounds
$$
M_p(N) \ll N \qquad \mbox{and}\quad T_{\nu,p}(N) \ll N (\log N)^{\nu -1}.
$$
for $N \ge p^{3/4+\varepsilon}$ and $N \ge p^{2/3+\varepsilon}$, respectively (for any fixed $\varepsilon>0$). We will explain the ideas of the recent joint work with Maxim Korolev (2020) where both these thresholds are lowered down to $N \ge p^{1/2+\varepsilon}$. We will also discuss some open questions.


Conjecture de Manin—Peyre pour une famille de solides admettant des fibrations quadriques

Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 23 juin 2022 11:00-12:00 Lieu : Oratrice ou orateur : Zhizhong Huang (IST Austria) Résumé :

Manin et ses collaborateurs ont conjecturé des formules asymptotiques pour le nombres des points de hauteur anticanonique bornée sur les variétés de Fano. Nous démontrons cette conjecture pour la famille de variétés définies par l’équation $$L_1(x_1,x_2)y_1^2+L_2(x_1,x_2)y_2^2+L_3(x_1,x_2)y_3^2+L_4(x_1,x_2)y_4^2=0,$$ où $L_i$ sont des formes bilinéaires deux à deux non-proportionnelles. La constante arithmétique apparaissant dans le terme principal coïncide avec celle conjecturée par Peyre. La démonstration utilise divers outils de la théorie analytique des nombres. Il s’agit d’un travail en commun avec D. Bonolis et T. Browning.


Well-behaved Beurling number systems

Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 22 juin 2022 11:00-12:00 Lieu : Salle Döblin Oratrice ou orateur : Frederik Broucke (Ghent University) Résumé :
A Beurling number system generalizes the multiplicative structure of the classical primes and integers. It consists of a non-decreasing unbounded sequence of real numbers $\{p_j\}_{j=1}^{\infty}$ with $p_1>1$, called the generalized primes, and the sequence of generalized integers $\{n_k\}_{k=0}^{\infty}$ which consists of the number 1 and all possible products of (powers of) the $p_j$. With such a system, one associates counting functions $\pi(x)$ and $N(x)$, counting the number of generalized primes and integers, respectively, below $x$. The primes satisfy the PNT if $\pi(x) \sim x/\log x$, and the integers have a density if $N(x) \sim \rho x$ for some positive $\rho$. If in these relations one has an error term of the form $O(x^a)$ for some $a<1$, one calls the primes or integers well-behaved.
In this talk, I will discuss various properties of these classes of Beurling systems, including extremal examples and omega results. I also discuss systems for which the primes and integers are simultaneously well-behaved. Finally, I will talk about some open problems.

Optimality for Tauberian theorems

Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 22 juin 2022 10:00-11:00 Lieu : Salle Döblin Oratrice ou orateur : Gregory Debruyne (Ghent University) Résumé :

One version of the Ingham-Karamata theorem states that for each slowly oscillating function $\tau$ whose Laplace transform admits an analytic continuation beyond the line $\Re s \: s = 0$ must obey the asymptotic law $\tau(x) = o(1)$. This theorem is a cornerstone in Tauberian theory and has plenty of applications in number theory; one of the quickest proofs of the Prime Number Theorem passes through this theorem. 

We shall show that the decay rate $o(1)$ in the Ingham-Karamata theorem is optimal even if one assumes analytic continuation of the Laplace transform up to a larger halfplane. The attractive proof is based on the open mapping theorem. 


5 6 7 8 9 10 11 12 13 14 15 16