Exposés à venir
Benoît Daniel (IÉCL) -- titre à venir
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 28 novembre 2024 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Résumé :Un crible minorant effectif pour les entiers friables
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 28 novembre 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Adrien Mounier (Aix-Marseille Université) Résumé :Soient $\mathcal{A}$ un ensemble fini d’entiers naturels non-nuls et $y \geq 1$. Nous donnons une minoration effective du cardinal de l’ensemble $\{n\in\mathcal{A} ; p|n \Rightarrow p \leq y\}$ sous la condition d’une bonne connaissance du niveau de répartition de l’ensemble $\mathcal{A}$. Quelques conséquences seront ensuite abordées, dont une application aux valeurs friables de polynômes ou de formes binaires à coefficients entiers, puis une application aux entiers friables voisins.
Journée à l'honneur de David Vogan
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 5 décembre 2024 00:00-23:59 Lieu : Oratrice ou orateur : Résumé :Une version effective du théorème des nombres premiers de Lu
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 5 décembre 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Vincent Gozé (Université du Littoral Côte d'Opale) Résumé :Soit $\pi(x)$ le nombre de nombres premiers dans l’intervalle $[1,x]$. Nous savons depuis Euclide que $\pi(x)$ tend vers l’infini, mais à quelle vitesse ? La réponse à cette question fut obtenue pour la première fois en 1896 par Jacques Hadamard et Charles-Jean de la Vallée Poussin qui démontrèrent, de manière indépendante, le théorème des nombres premiers: \[\pi(x)\sim \frac{x}{\log x}\quad(x\to \infty).\]
La démonstration de Hadamard et La Vallée Poussin utilise principalement les propriétés de la fonction zêta de Riemann et donc l’analyse complexe. Ce n’est qu’en 1949 qu’Erdős et Selberg publièrent indépendamment la première démonstration élémentaire (utilisant uniquement l’analyse réelle) du théorème des nombres premiers. Dans cet exposé, nous présenterons le développement historique des démonstrations élémentaires du théorème des nombres premiers puis nous donnerons une version effective du théorème des nombres premiers de Lu qui, à ce jour, donne le meilleur terme d’erreur en utilisant des méthodes élémentaires.
Pause pour arbre de Noël GNC à Orléans
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 12 décembre 2024 14:15-15:15 Lieu : Oratrice ou orateur : Résumé :Sur une généralisation des puissances d'un entier (``powered numbers''). Application à un problème additif.
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 12 décembre 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Olivier Robert (Institut Camille Jordan) Résumé :La notion de fonction puissance d’un nombre entier, introduite par Mazur (2000) fait intervenir le noyau (ou radical) d’un entier. Cette fonction lui permet de définir une généralisation des puissances (« powered numbers »). Après avoir rappelé des résultats récents sur le noyau d’un entier, nous présenterons des résultats nouveaux sur la fonction de répartition des puissances généralisées, ainsi que sur un problème additif concernant la représentation d’un entier comme somme de puissances généralisées. Ce travail a été réalisé en collaboration avec J. Brüdern.
Pierre Bieliavksy -- titre à venir
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 13 février 2025 14:14-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Pierre Bieliavsky (Louvain-la-Neuve) Résumé :Archives
Generalized visible points in random walk paths on $\mathbb{Z}^k$
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 25 mai 2023 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Kiu Liu (Qingdao University) Résumé :A lattice point $P\in\mathbb{Z}^k$ $(k\geq 2)$ is said to be visible if there is no other lattice point lying on the line segment joining $P$ and the origin. We study the distribution of generalized visible points (along curves) in random walk paths on $\mathbb{Z}^k$. This a joint work with Meijie Lu and Xianchang Meng.
Opérateurs d'entrelacement II
Catégorie d'évènement : Groupe de travail Géométrie non commutative Date/heure : 12 mai 2023 10:15-12:15 Lieu : Salle 046 Metz Oratrice ou orateur : Angela Pasquale Résumé :Bivariate asymptotics for eta-theta quotients with simple poles
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 11 mai 2023 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Giulia Cesana (université de Cologne) Résumé :Eta-theta quotients show up in numerous areas of mathematics and physics, as in string theory, the theory of black holes and the theory of theta blocks. In my talk I am going to talk about a joint project with Joshua Males, where we employ a variant of Wright’s Circle Method to determine the bivariate asymptotic behavior of Fourier coefficients for a wide class of eta-theta quotients with simple poles in the upper half-plane.
Graded Lie algebras and Harish-handra pairs
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 11 mai 2023 14:00-15:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Oleksii Kotov (University of Hradec Králové) Résumé :Formes modulaires "quantiques" de poids non nul
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 4 mai 2023 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Sary Drappeau (IMM, université de Marseille) Résumé :Dans un travail récent avec Sandro Bettin (Gênes) nous étudions dans un cadre général les applications $f:{\mathbb Q}\to{\mathbb C}$ qui satisfont des relations fonctionnelles du type suivant: pour tout $\gamma \in{\rm SL}(2,{\mathbb Z})$, la différence $h_{\gamma}(x) := f(\gamma x) – |cx + d|^{-k} f(x)$ est régulière en un certain sens. Ici $k$ est un nombre complexe. Les exemples naturels incluent notamment les intégrales d’Eichler de formes modulaires ou de formes de Maass, ou encore des sommes de cotangentes.
On s’intéressera plus particulièrement au cas $k\neq 0$, et à l’existence de fonctions limites permettant de prédire la répartition des valeurs prises par f sur des rationnels dont le dénominateur tend vers l’infini.
Opérateurs d'entrelacement
Catégorie d'évènement : Groupe de travail Géométrie non commutative Date/heure : 24 mars 2023 10:15-12:15 Lieu : Salle 046 Metz Oratrice ou orateur : Angela Pasquale Résumé :Generalized visible points in random walk paths on $\mathbb{Z}^k$
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 23 mars 2023 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Kui Liu (Qingdao University) Résumé :A lattice point $P\in\mathbb{Z}^k$ $(k\geq 2)$ is said to be visible if there is no other lattice point lying on the line segment joining $P$ and the origin. We study the distribution of generalized visible points (along curves) in random walk paths on $\mathbb{Z}^k$. This a joint work with Meijie Lu and Xianchang Meng.
Lagrangien d'Hilbert-Einstein sur un espace de repères généralisés
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 23 mars 2023 14:00-15:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Jeremie Pierard de Maujouy (Jussieu) Résumé :L’équation d’Einstein peut être obtenue comme le système d’équations d’Euler-Lagrange associées au Lagrangien d’Hilbert-Einstein, qui est essentiellement la courbure scalaire. Le tenseur de courbure, et donc l’équation d’Einstein, peut être construit et étudié sur le fibré des repères de l’espace-temps. Nous présenterons un Lagrangien sur une variété de dimension 10 dont les solutions aux équations d’Euler-Lagrange équipent la variété d’une structure qui est presque celle de l’espace des repères d’une variété d’Einstein. Ceci nous mènera à introduire une structure qui généralise celle des espaces de repères munis d’une connexion principale.
Nombres premiers et carrés avec des chiffres préassignés
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 16 mars 2023 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Cathy Swaenepoel (université de Paris, IMJ) Résumé :Bourgain (2015) a estimé le nombre de nombres premiers avec une
proportion positive de chiffres préassignés en base 2. Nous
rappellerons tout d’abord une généralisation de ce résultat à toute
base $g\geq 2$. Nous présenterons ensuite un résultat plus récent pour
l’ensemble des carrés. Plus précisément, pour toute base $g\geq 2$,
nous obtenons une formule asymptotique pour le nombre de carrés avec
une proportion $c>0$ (explicite) de chiffres préassignés.
Notre preuve suit principalement la stratégie développée par Bourgain
pour les nombres premiers en base 2, avec de nouvelles difficultés
pour les carrés. Elle est fondée sur la méthode du cercle et combine
des techniques d’analyse harmonique avec les propriétés arithmétiques
des carrés et des majorations des sommes de Weyl quadratiques.
Probabilités sur les groupes quantiques compacts
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 16 mars 2023 14:00-15:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Amaury Freslon (Orsay) Résumé :Les groupes quantiques compacts de matrices sont des généralisations des groupes de Lie compacts dans le contexte de la géométrie non-commutative. Malheureusement, il leur manque certains aspects fondamentaux des groupes classiques, et notamment un analogue de l’algèbre de Lie qui permettrait de définir une structure Riemannienne. Cela dit, on peut aussi retrouver cette structure de façon probabiliste à l’aide du mouvement Brownien. Je présenterai quelques travaux montrant comment cette approche probabiliste peut s’étendre au cadre quantique et éclairer le problème de la structure géométrique de ces groupes quantiques.