Exposés à venir
Surfaces minimales et surfaces de Ricci
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 28 novembre 2024 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Benoît Daniel (IÉCL) Résumé :Les surfaces minimales sont les surfaces qui sont points critiques de la fonctionnelle d’aire à bord fixé. Elles sont caractérisées par le fait que leur courbure moyenne est nulle. Un problème posé par Ricci est de déterminer quelles surfaces riemanniennes peuvent être immergées (localement) isométriquement comme surfaces minimales de l’espace euclidien de dimension 3. Ricci a donné une caractérisation dans le cas où la surface est à courbure strictement négative. A. et S. Moroianu ont donné une caractérisation complète sans cette hypothèse et ont introduit la notion de surface de Ricci. Nous verrons des généralisations de cette notion, nous intéresserons aux surfaces de Ricci généralisées compactes et verrons le lien avec les surfaces à courbure constante et singularités coniques. Il s’agit d’un travail en commun avec Yiming Zang.
Un crible minorant effectif pour les entiers friables
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 28 novembre 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Adrien Mounier (Aix-Marseille Université) Résumé :Soient $\mathcal{A}$ un ensemble fini d’entiers naturels non-nuls et $y \geq 1$. Nous donnons une minoration effective du cardinal de l’ensemble $\{n\in\mathcal{A} ; p|n \Rightarrow p \leq y\}$ sous la condition d’une bonne connaissance du niveau de répartition de l’ensemble $\mathcal{A}$. Quelques conséquences seront ensuite abordées, dont une application aux valeurs friables de polynômes ou de formes binaires à coefficients entiers, puis une application aux entiers friables voisins.
Journée à l'honneur de David Vogan
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 5 décembre 2024 00:00-23:59 Lieu : Oratrice ou orateur : Résumé :Une version effective du théorème des nombres premiers de Lu
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 5 décembre 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Vincent Gozé (Université du Littoral Côte d'Opale) Résumé :Soit $\pi(x)$ le nombre de nombres premiers dans l’intervalle $[1,x]$. Nous savons depuis Euclide que $\pi(x)$ tend vers l’infini, mais à quelle vitesse ? La réponse à cette question fut obtenue pour la première fois en 1896 par Jacques Hadamard et Charles-Jean de la Vallée Poussin qui démontrèrent, de manière indépendante, le théorème des nombres premiers: \[\pi(x)\sim \frac{x}{\log x}\quad(x\to \infty).\]
La démonstration de Hadamard et La Vallée Poussin utilise principalement les propriétés de la fonction zêta de Riemann et donc l’analyse complexe. Ce n’est qu’en 1949 qu’Erdős et Selberg publièrent indépendamment la première démonstration élémentaire (utilisant uniquement l’analyse réelle) du théorème des nombres premiers. Dans cet exposé, nous présenterons le développement historique des démonstrations élémentaires du théorème des nombres premiers puis nous donnerons une version effective du théorème des nombres premiers de Lu qui, à ce jour, donne le meilleur terme d’erreur en utilisant des méthodes élémentaires.
Pause pour arbre de Noël GNC à Orléans
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 12 décembre 2024 14:15-15:15 Lieu : Oratrice ou orateur : Résumé :Sur une généralisation des puissances d'un entier (``powered numbers''). Application à un problème additif.
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 12 décembre 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Olivier Robert (Institut Camille Jordan) Résumé :La notion de fonction puissance d’un nombre entier, introduite par Mazur (2000) fait intervenir le noyau (ou radical) d’un entier. Cette fonction lui permet de définir une généralisation des puissances (« powered numbers »). Après avoir rappelé des résultats récents sur le noyau d’un entier, nous présenterons des résultats nouveaux sur la fonction de répartition des puissances généralisées, ainsi que sur un problème additif concernant la représentation d’un entier comme somme de puissances généralisées. Ce travail a été réalisé en collaboration avec J. Brüdern.
Pierre Bieliavksy -- titre à venir
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 13 février 2025 14:14-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Pierre Bieliavsky (Louvain-la-Neuve) Résumé :Archives
A new bound for A(A + A) for large sets
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 5 janvier 2023 14:30-15:30 Lieu : Oratrice ou orateur : Aliaksei Semchankau Résumé :We prove the following structural result, resembling the Arithmetical Regularity Lemma of B. Green, and Graph Container Theorem in hypergraphs:
Lemma: Let $A_1,A_2,\ldots,A_k\subset\mathbb{F}_p$ be such that $|A_i| \gg p$ for all $i$. Assume that $(A_1 * A_2 * \ldots * A_k)(a) = o(p^{k-1})$ for some $a \in \mathbb{F}_p$.
Then there exist sets $W_1, \ldots, W_k$, which we call wrappers, and sets $Y_1, \ldots, Y_k$, such that:
$(W_1 * W_2 * \ldots * W_k)(b) = o(p^{k-1})$ for some $b \in \mathbb{F}_p$ , $A_i \setminus Y_i \subseteq W_i$ and $|Y_i| = o(p)$ for all $i$, $|W_i|_{\omega} = p^{o(1)}$ for all $i$, where $|\cdot|_{\omega}$ is a Wiener norm.
As a consequence of wrappers having a small Wiener norm, we obtain the following results.
If $A(A+A)$ does not cover all nonzero residues in $\mathbb{F}_p$, then $|A| \leqslant p/8 + o(p)$.
If $A$ is both sum-free and satisfies $A = A^*$, then $|A| \leqslant p/9 + o(p)$.
If $|A| \gg \frac{\log\log{p}}{\sqrt{\log{p}}}p$, then $|A + A^*| \geqslant (1 – o(1))\min(2\sqrt{|A|p},p)$.
Constants 1/8, 1/9, and 2 are optimal.
To obtain this result, we use Croot-Laba-Sisask Lemma and properties of Wiener norms.
This continues the work of A. Balog, K. Benjamin, P.-Y. Bienvenu, K. Broughan, F. Hennecart, B. Murphy, M. Rudnev, I. Shkredov, I. Shparlinski, and E. Yazici.
Characterization of the $L^p$-Range of the Poisson Transform in Symmetric Spaces of Real Rank One (exposé en ligne)
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 5 janvier 2023 14:00-15:00 Lieu : Oratrice ou orateur : Nadia Ourchane (Rabat) Résumé :Let $X=G/K$ be a Riemannian symmetric space of non compact type with real rank one. For $\lambda \in \mathbb{C}$ and $f$ an integrable function on the Furstenberg boundary $K/M$, the Poisson transform $P_\lambda$ of $f$ is given by
$
(P_\lambda f)(x)=\int_{K/M} e^{(i\lambda+\rho)A(x,b)}f(b)db, \quad \mbox{for} \; x\in X.
$
The aim of this talk is to present a necessary and a suffucient condition on eigenfunctions of the Laplace-Beltrami operator associated to $X$ with eigenvalue $-(\lambda^2+\rho^2)$ to have an $L^p$-Poisson integral representations on the boundary $K/M$. A special discuss of the case of the exceptional symmetric space.
Non-canonical Bertrand numeration systems
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 15 décembre 2022 14:00-15:00 Lieu : Oratrice ou orateur : Emilie Charlier (université de Liège) Résumé :Among all positional numeration systems, the widely studied Bertrand numeration systems are defined by a simple criterion in terms of their numeration languages. In 1989, Bertrand-Mathis characterized them via representations in a real base $\beta$. However, the given condition turns out to be not necessary. In this talk, I will present a correction of Bertrand-Mathis’ result. The main difference arises when $\beta$ is a simple Parry number, in which case two associated Bertrand numeration systems are derived. Along the way, we define a non-canonical $\beta$-shift and study its properties analogously to those of the usual canonical one.
Suites automatiques et morphiques de grande complexité le long des sous-suites
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 8 décembre 2022 14:30-15:30 Lieu : Oratrice ou orateur : Pierre Popoli (IECL) Résumé :Dans cet exposé, je présenterai les différents résultats de ma thèse. Ces travaux se situent à l’intersection entre les mathématiques et l’informatique théorique.
Une suite pseudo-aléatoire, bien qu’engendrée par un algorithme déterministe, possède un comportement proche de celui d’une suite aléatoire. Nous nous intéressons à différentes mesures de complexité d’une suite pseudo-aléatoire, qui décrivent le comportement d’une suite aléatoire. De l’autre côté du spectre, les suites automatiques sont des suites profondément non aléatoires. La suite de Thue—Morse et la suite de Rudin—Shapiro sont des célèbres exemples de suites automatiques. Cependant certaines sous-suites des suites automatiques, comme les sous-suites polynomiales, sont bien plus aléatoires.
Dans un premier temps, nous exposerons les résultats des deux premiers articles. Ces deux articles étudient la complexité d’ordre maximal d’une suite, qui quantifie l’imprédictibilité d’une suite par un registre à décalage à rétroaction (FSR). Le premier article répond à une question de Sun et Winterhof (2019) sur la complexité d’ordre maximal de la suite de Thue—Morse le long de tout polynôme unitaire. Nous étudions ensuite le système de numération de Zeckendorf et sa fonction somme des chiffres est une suite morphique non-automatique. La suite de Fibonacci—Thue—Morse est l’analogue à celle de Thue—Morse en base de Zeckendorf. Le deuxième article étudie la complexité d’ordre maximal de cette suite le long de tout polynôme et nous montrons un résultat relativement différent à précédemment.
Ensuite, nous exposerons les résultats du troisième article. Nous nous intéressons à la somme des chiffres binaires des carrés parfaits. Le premier résultat est dans la lignée des travaux de Hare, Laishram et Stoll sur les entiers impairs qui ont le même poids de Hamming que leur carré. Nous résolvons une partie des cas restants de leur étude. Le second résultat porte sur les carrés parfaits de poids 4 et 5 et démontre partiellement une conjecture de Benett, Bugeaud et Mignotte.
La dernière partie de cette thèse porte sur les corrélations d’ordre $k$ de la suite de Rudin—Shapiro. Nous suivons les travaux de Aloui,Mauduit et Mkaouar sur les corrélations de la suite de Thue—Morse le long des premiers et établissons un résultat partiel sur les corrélations de la suite de Rudin—Shapiro le long des premiers.
Pause (SL2R à Louvain-la-Neuve)
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 8 décembre 2022 14:00-15:00 Lieu : Oratrice ou orateur : Résumé :Une généralisation de la conjecture d'Artin parmi les presque premiers
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 1 décembre 2022 14:30-15:30 Lieu : Oratrice ou orateur : Paul Péringuey (IECL) Résumé :La conjecture d’Artin stipule que l’ensemble des nombres premiers pour
lesquels un entier $a$ différent de $-1$ ou un carré parfait est racine
primitive admet une densité asymptotique parmi tous les premiers. En 1967
C.Hooley démontra cette conjecture sous l’hypothèse de Riemann généralisée.
La notion de racine primitive peut être étendue modulo un entier quelconque
en considérant alors les éléments du groupe multiplicatif engendrant des sous-
groupes de tailles maximales. Je parlerai de l’ensemble des presque premiers
pour lesquels un nombre $a$ est racine primitive généralisée, et montrerai que
l’on obtient, sous GRH, des résultats similaires à la conjecture d’Artin pour
les racines primitives.
Conjecture de Fried pour des fibrés admissibles
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 1 décembre 2022 14:00-15:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Shu Shen (Jussieu) Résumé :La relation entre le spectre du laplacien et les géodésiques fermées sur une variété riemannienne compacte est l’un des thèmes centraux de la géométrie différentielle. Fried a conjecturé que la torsion analytique, qui est un produit alterné de déterminants régularisés des laplaciens, est égale à la valeur en zéro de la fonction zêta dynamique. Dans cet exposé, je montrerai la conjecture de Fried sur des espaces localement symétriques tordus par un fibré vectoriel plat acyclique obtenu par une représentation du groupe de Lie sous-jacent. Cela généralise les résultats de moi-même pour les fibrés unitaires, et les résultats de Brocker, Muller et Wotzker sur les variétés hyperboliques.
Reconstituer la genèse des Éléments de mathématique de Bourbaki : une enquête au croisement de l’archivistique et de l’histoire des mathématiques.
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 24 novembre 2022 14:30-15:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Christophe Eckes (Archives Poincaré, Université de Lorraine) Résumé :Les Éléments de mathématique désignent une vaste entreprise éditoriale menée par le groupe Nicolas Bourbaki sur des thématiques aussi diverses que la théorie des ensembles, l’algèbre, la topologie, les espaces vectoriels topologiques, l’intégration ou encore les groupes et les algèbres de Lie. Les premiers fascicules des Éléments paraissent ponctuellement à la fin des années 1930 et durant la période de l’Occupation, avant de faire l’objet de publications régulières à partir de 1947. Dans le cadre de cet exposé, nous reviendrons tout d’abord sur les premières années d’existence du groupe afin de comprendre comment cette entreprise est née. Nous dresserons ensuite un état des lieux des archives disponibles permettant de documenter la genèse des Éléments de mathématique, ce qui nous conduira à mettre en exergue certaines pièces issues du fonds Jean Delsarte qui est conservé à la bibliothèque de l’Institut Élie Cartan. Les archives du groupe Bourbaki sont essentiellement composées de deux classes de documents : des Rédactions qui documentent les états intermédiaires dans la genèse d’un fascicule des Éléments de mathématique et les numéros du Journal de Bourbaki qui contribuent à comprendre comment ces Rédactions ont été discutées, critiquées et révisées. Nous reviendrons sur les précautions de méthode qui s’imposent pour étudier et relier ces deux grandes classes de documents. Enfin, nous présenterons succinctement l’état de nos recherches sur les premières rédactions Bourbaki dévolues aux groupes et aux algèbres de Lie.
Calcul explicite de la paramétrisation modulaire sur les corps de fonctions par les courbes modulaires de Drinfeld
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 17 novembre 2022 14:30-15:30 Lieu : Oratrice ou orateur : Valentin Petit Résumé :La paramétrisation modulaire dans le cas des corps de fonctions est remarquablement différente du revêtement modulaire classique sur le corps des nombres complexes et fait appel à de nombreux outils théoriques. \\
La situation est la suivante: soit $q$ une puissance d’un nombre premier, et soit $\mathbb{F}_q$ un corps à $q$ éléments. Soit $E$ une courbe elliptique non-isotriviale définie sur $\mathbb{F}_q(T)$ par une équation de Weierstrass de la forme
$$E\colon y^2+a_1xy+a_3y=x^3+a_2x^2+a_4x+a_6, \quad a_i \in \mathbb{F}_q[T],$$
de mauvaise réduction multiplicative en la place $\infty=1/T$.
Alors la paramétrisation modulaire est une application rationnelle $\phi \colon \overline{M}_\Gamma \rightarrow E$, où $\overline{M}_\Gamma$ est la courbe modulaire de Drinfeld. Pour la construction de cette application nous avons besoin d’étudier les arbres de Bruhat-Tits et les fonctions thêta holomorphes.On s’intéressera plus particulièrement au calcul de l’image des pointes de $\overline{M}_\Gamma$ par $\phi$. Les résultats seront illustrés à travers quelques exemples.
Points rationnels sur une intersection de formes diagonales
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 10 novembre 2022 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Olivier Robert (Université JeanMonnet, Saint Étienne; Institut Camille Jordan) Résumé :On considère des intersections de formes diagonales à coefficients entiers de degrés distincts. Nous établissons une formule asymptotique pour le nombre N(X) des points rationnels de hauteur au plus X sur ces variétés. La preuve utilise la méthode de Hardy-Littlewood (dite Méthode du Cercle) et des avancées récentes sur le système de Vinogradov. Nous établissons également un résultat plus fin pour un choix particulier de degrés, en utilisant une technique due à Wooley et une estimation de sommes d’exponentielles issue d’une approche récente de la méthode de van der Corput. Les résultats présentés ici font l’objet d’un travail en commun avec S. Boyer.