A venir
Les principaux séminaires de l’équipe ont lieu le lundi aux horaires suivants :
- Séminaire de géométrie différentielle : 14h-15h
- Séminaire de géométrie complexe : 15h30-16h30
Les responsables sont Damian Brotbeck pour la géométrie complexe et Benoit Daniel pour la géométrie différentielle.
The geometry of Kerr black holes and the Teukolsky equation.
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 8 décembre 2025 15:30-16:30 Lieu : Oratrice ou orateur : Pascal Millet Résumé :An important family of solutions to the Einstein vacuum equations is given by the Kerr metrics, which describe rotating black holes. In this talk, I will present some important geometric properties of these spacetimes relevant to the study of classical field equations such as the scalar waves, electromagnetism and linearized gravity. As observed by Teukolsky, by exploiting a special algebraic property of the spacetime, it is possible to decouple certain components of the fields from the rest of the system, leading to the so-called Teukolsky equation. Solutions of this equation can then be analyzed to recover information about the full system.
Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 5 janvier 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Titre à préciser
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 26 janvier 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Andrei Moroianu Résumé :Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 2 février 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Titre à préciser
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 9 février 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Laurent Hauswirth Résumé :Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 2 mars 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Titre à préciser
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 30 mars 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Hiba Bibi Résumé :Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 4 mai 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 1 juin 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 6 juillet 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Archives
Moduli of Lagrangian fibrations on hyperkahler manifolds
Catégorie d’évènement : Groupe de travail Géométrie Date/heure : 11 mai 2018 10:30-11:30 Lieu : Oratrice ou orateur : Fei-Tong Lyu Résumé :Frobenius splitting, chapitre 2.3: d'autres scindages de G/B et G/B à— G/B
Catégorie d’évènement : Groupe de travail Géométrie Date/heure : 9 mai 2018 10:00-12:00 Lieu : Oratrice ou orateur : Pierre-Emmanuel Chaput Résumé :Frobenius splitting, chapitre 2: scindage de Frobenius des variétés de Schubert (suite)
Catégorie d’évènement : Groupe de travail Géométrie Date/heure : 9 avril 2018 15:30-17:00 Lieu : Oratrice ou orateur : Guy Rousseau Résumé :Une EDP à la Obata sur les variétés riemanniennes
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 9 avril 2018 14:00-15:00 Lieu : Oratrice ou orateur : Nicolas Ginoux Résumé :Dans ce travail en cours et en commun avec Ines Kath (Greifswald) et Georges Habib (Beyrouth), je m’attacherai à décrire quelques propriétés des variétés riemanniennes portant une fonction satisfaisant une équation liant sa hessienne au tenseur de Ricci de la variété.
Frobenius splitting, chapitre 2: scindage de Frobenius des variétés de Schubert
Catégorie d’évènement : Groupe de travail Géométrie Date/heure : 4 avril 2018 10:00-12:00 Lieu : Oratrice ou orateur : Guy Rousseau Résumé :Positivity of (1,1) classes
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 26 mars 2018 15:30-16:30 Lieu : Oratrice ou orateur : Valentino Tosatti Résumé :I will discuss some results extending classical (as well as more recent) theorems in algebraic geometry to (1,1) cohomology classes on compact Kahler manifolds. In particular I will discuss Nakamaye’s Theorem, the Fujita-Zariski Theorem, and Seshadri constants.