Séminaires

A venir

Les principaux séminaires de l’équipe ont lieu le lundi aux horaires suivants :

  • Séminaire de géométrie différentielle : 14h-15h
  • Séminaire de géométrie complexe : 15h30-16h30

Les responsables sont Damian Brotbeck pour la géométrie complexe et Benoit Daniel pour la géométrie différentielle.


Séminaire Commun – Homotopies Stables de la Sphère

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 7 juillet 2025 14:00-16:00 Lieu : Oratrice ou orateur : Viet Cuong Pham Résumé :
 1) Exposé introductif :
   – Titre : Groupes d’homotopie stable de la sphère
   – Résumé : Après avoir rappelé les groupes d’homotopie (stable) de la sphère, j’établirai un lien entre le dernier avec les structures différentielles exotiques sur les sphères topologiques. L’invariant de Kervaire entre alors en jeu. Je terminerai cet exposé avec la suite spectrale d’Adams qui est un outil important pour calculer les groupes d’homotopie stable.
2) Exposé spécialisé :
  – Titre : Théorie d’homotopie stable chromatique
  – Résumé : La théorie d’homotopie chromatique introduit une filtration sur les groupes d’homotopie stable via la localisation de Bousfield par les E-théories homologiques de Morava à l’image de la filtration des groupes formels via leurs hauteurs. Les calculs des strates de cette filtration qui sont plus abordables que le calcul direct des groupes d’homotopie stable permettent de détecter des familles infinies d’éléments de ces derniers. Je commencerai l’exposé par une introduction à la théorie générale, puis parlerai des avancés dans le calcul du deuxième niveau de la filtration chromatique et pour finir, expliquerai des applications dans la détection des structures exotiques sur les sphères.

Archives

Hyperbolicities: algebraic, analytic, and arithmetic

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 5 novembre 2018 14:45-15:45 Lieu : Oratrice ou orateur : Ariyan Javanpeykar Résumé :

What properties should a projective variety over a number field with only finitely many « rational points » have?
A conjecture of Green-Griffiths-Lang predicts that such a variety should be hyperbolic in a complex-analytic sense.
In this talk I will explain how to verify some predictions made by this conjecture.


Free boundary hypersurfaces in the unit ball

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 5 novembre 2018 13:30-14:30 Lieu : Oratrice ou orateur : Feliciano Vità³rio Résumé :

In this talk we will show some topological and geometrical results for free boundary submanifolds under some hypothesis on the length of traceless second fundamental form. If time permits, we will deal with the problem of prescribe the curvature on Riemannian manifolds with boundary.


Systèmes de Tits

Catégorie d’évènement : Groupe de travail Géométrie Date/heure : 5 novembre 2018 10:00-12:00 Lieu : Oratrice ou orateur : Guy Rousseau Résumé :

Chapitre V de Kumar


Gdt "Orbifolds" : 1er exposé

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 25 octobre 2018 14:00-15:30 Lieu : Oratrice ou orateur : Damien Mégy Résumé :

Sur la dynamique d'automorphismes préservant une fibration ou un feuilletage: finitude de l'action transverse

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 22 octobre 2018 15:30-16:30 Lieu : Oratrice ou orateur : Federico Lo Bianco Résumé :

Etant donné un automorphisme (ou une transformation birationnelle) f d’une variété projective complexe X, on s’intéresse à  des propriétés dynamiques telles que le comportement des orbites typiques ou l’existence de points périodiques. Cette étude est simplifiée lorsque f permute les fibres d’une fibration non-triviale $picolon X to B$: la dynamique est alors décomposée en une dynamique sur la base B plus une dynamique sur les fibres. Une des premières questions est alors de déterminer sous quelles conditions la dynamique sur la base est finie; je présenterai un résultat dans cette direction, dont la preuve passe par un argument d’intégration p-adique. Le critère s’applique notamment aux transformations birationnelles des variétés symplectiques holomorphes irréductibles.
Si le temps me le permet, je présenterai des travaux plus récents en collaboration avec E.Rousseau et F.Touzet, qui traitent une version locale du même problème: au lieu d’une fibration, on suppose que f préserve un feuilletage F et on se demande sous quelles hypothèses un itéré de f préserve toute feuille de F.


Prescription de la courbure de Gauss des convexes hyperboliques

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 22 octobre 2018 14:00-15:00 Lieu : Oratrice ou orateur : Philippe Castillon Résumé :

La courbure de Gauss d’un corps convexe peut être vue comme une mesure (avec certaines propriétés) sur la sphère unité, étendant ainsi la notion de courbure de Gauss des convexes réguliers. Le problème d’Alexandrov consiste, à  partir d’une telle mesure, à  reconstruire le convexe. Pour les convexes de l’espace euclidien, une façon de résoudre ce problème est de se ramener à  un problème de transport optimal sur la sphère.
Pour les convexes de l’espace hyperbolique, ce problème de prescription de la courbure de Gauss est tout aussi naturel. Je montrerai comment définir la courbure de Gauss par une propriété de transport de mesures et comment cette approche permet de résoudre le problème d’Alexandrov en se ramenant à  un problème d’optimisation non linéaire. Si le temps le permet, j’expliquerai comment résoudre ce problème d’optimisation.
Travail en commun avec Jérôme Bertrand.


Gdt "Orbifolds" : "Un survol"

Catégorie d’évènement : Groupe de travail Géométrie Date/heure : 18 octobre 2018 14:15-15:15 Lieu : Oratrice ou orateur : Damien Mégy Résumé :

Stability of black hole apparent horizons: a complex-magnetic Laplacian spectral problem

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 15 octobre 2018 14:00-15:00 Lieu : Oratrice ou orateur : José-Luis Jaramillo Résumé :

We discuss a spectral problem characterising the stability of apparent horizons in General
Relativity. Apparent horizons are closed (compact, without boundary) Riemannian surfaces
modelling sections of horizons in black hole spacetimes, namely Lorentzian manifolds satisfying
Einstein equations and containing light-trapped regions. After presenting the geometric elements
relevant for this kind of surfaces, we will formulate the (geometric) spectral problem associated
with the so-called stability operator of Marginally Outer Trapped Surfaces (MOTS), an elliptic
operator defined on these apparent horizons. Interestingly, such spectral problem is equivalent
to the one associated with a magnetic Laplacian with imaginary magnetic field, the magnetic field
term corresponding to the black hole rotation (a potential given by the apparent horizon curvature
is also present). This connection offers a potentially rich bridge between the original geometric
problem in relativity and the spectral analysis study of complexified-magnetic Laplacians.


Rappels sur les algèbres de Kac-Moody (groupe de travail sur les groupes de KM)

Catégorie d’évènement : Groupe de travail Géométrie Date/heure : 15 octobre 2018 10:00-12:00 Lieu : Oratrice ou orateur : Lucas Fresse Résumé :

Suites de Brauer-Hasse-Noether sur des corps de séries de Laurent à  deux variables

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 8 octobre 2018 15:30-16:30 Lieu : Oratrice ou orateur : Diego Izquierdo Résumé :

En théorie des nombres, la suite de Brauer-Hasse-Noether est un résultat fondamental qui permet de comprendre les algèbres simples centrales sur le corps des nombres rationnels (ou ses extensions finies). Dans cet exposé, je vais présenter des généralisations de ces suites à  des situations plus géométriques, o๠le corps des nombres rationnels est remplacé par un corps de séries de Laurent à  deux variables.