A venir
Les principaux séminaires de l’équipe ont lieu le lundi aux horaires suivants :
- Séminaire de géométrie différentielle : 14h-15h
- Séminaire de géométrie complexe : 15h30-16h30
Les responsables sont Damian Brotbeck pour la géométrie complexe et Benoit Daniel pour la géométrie différentielle.
Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 28 avril 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 5 mai 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 2 juin 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Titre à préciser
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 16 juin 2025 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Emmanuel Humbert Résumé :Séminaire Commun – Viet Cuong Pham
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 7 juillet 2025 14:00-16:00 Lieu : Oratrice ou orateur : Viet Cuong Pham Résumé :Archives
Lines, twisted cubics on cubic fourfolds and the monodromy of the Voisin map
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 13 novembre 2024 15:00-16:00 Lieu : Salle Döblin Oratrice ou orateur : Franco Giovenzana (Orsay) Résumé :Abstract: Galois groups have a long history in enumerative geometry, encoding the intrinsic symmetries of enumerative problems. In this talk, after revisiting the core properties of enumerative Galois groups and their connections with monodromy, we focus on the Fano variety F of lines on a cubic fourfold Y, a hyperkähler fourfold, and investigate the monodromy of the Voisin map, a degree 16 self-rational map of F. We show that its Galois group is « as large as possible », and, in doing so, delve into the geometry of the LLSvS variety—a hyperkähler manifold parameterizing twisted cubics on Y. This is based on joint work with L.Giovenzana.
Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 4 novembre 2024 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire de groupes algébriques
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 21 octobre 2024 14:00-15:00 Lieu : Oratrice ou orateur : Pierre-Emmanuel Chaput Résumé :La conjecture standard de type Lefschetz pour certaines fibrations lagrangiennes
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 14 octobre 2024 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mattia Cavicchi Résumé :Quand X est une variété complexe projective lisse, de dimension d, l’i-ème itéré du cup-produit avec une section hyperplane induit un isomorphisme entre les espaces de cohomologie singulière H^(d-i)(X) et H^(d+i)(X). La conjecture standard de type Lefschetz pour X, formulée par Grothendieck dans les années 60 et encore largement ouverte, prédit que les inverses de ces isomorphismes devraient être induits par des cycles algébriques sur X \times X. Dans cet exposé, après une introduction à ces idées, je parlerai de travaux récents avec Ancona, Laterveer et Saccà, dans lesquels nous démontrons la conjecture pour certaines variétés hyperkähleriennes munies d’une fibration lagrangienne. De nouvelles idées nous permettent en fait de traiter certaines fibrations où les fibres ne sont pas toutes irréductibles, ainsi éliminant l’une des hypothèses les plus restrictives faites dans notre premier article.
Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 7 octobre 2024 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Formes modulaires et cônes de diviseurs de Noether-Lefschetz
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 30 septembre 2024 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pietro Beri Résumé :Dans cet exposé, je parlerai de cônes de diviseurs de Noether-Lefschetz sur des variétés modulaires orthogonales, notamment sur les espaces de modules des surfaces K3 quasi-polarisées. Au cours des dernières années, les travaux de nombreux auteurs ont exploré la relation de ces diviseurs avec certaines formes modulaires à valeurs vectorielles : je décrirai comment cette relation peut être utilisée pour donner des descriptions explicites des cônes de diviseurs. Il s’agit d’un travail en collaboration avec Ignacio Barros, Laure Flapan et Brandon Williams.
Holomorphic Euler characteristic and big fundamental groups
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 16 septembre 2024 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ya Deng Résumé :In 1995 Kollár conjectured that the Euler characteristic $\chi(K_X)\geq 0$ for any complex projective manifold $X$ having big fundamental groups. In a recent joint work with Botong Wang we prove Kollár’s conjecture if $\pi_1(X)$ is linear. I will explain the proof in the talk, which is based on $L^2$-vanishing theorems, together with techniques in the linear Shafarevich conjecture and geometry of mixed period maps.
Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 9 septembre 2024 14:00-16:00 Lieu : Oratrice ou orateur : Andreas Höring Résumé :Variétés de Fano avec un lieu de base anticanonique
Séminaire commun de géométrie
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 1 juillet 2024 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Carathéodory Geometry, Hyperbolicity and Rigidity
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 24 juin 2024 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Kwok-Kin Wong Résumé :We discuss some recent results concerning complex manifolds whose
universal coverings admit many bounded holomorphic functions.
Let $X$ be a quasi-projective manifold whose universal covering $M$ is
a strongly Carathéodory hyperbolic manifold. We will see that any
(quasi-)projective subvariety of $X$ is of (log-)general type. The
result is consistent with the prediction of a conjecture of Lang. We
will also see that $M$ has many interesting geometric and analytic
properties. Examples of $X$ include finite volume quotients of bounded
symmetric domains, moduli space of hyperbolic Riemann surfaces, etc.
Next we consider holomorphic maps $f:S=\Omega/\Gamma \rightarrow N$
from a finite volume quotient of bounded symmetric domain $Omega$ of
rank $\geq 2$ to a complex manifold $N$, where the universal covering
$\widetilde{N}$ of $N$ has sufficiently many bounded holomorphic
functions. We will see that the inverse $F^{-1}$ of the lifting
$F:\Omega\rightarrow \widetilde{N}$ of $f$ extends to a bounded
holomorphic map $R:\widetilde{N}\rightarrow \mathbb{C}^n$. This gives
another proof that $F$ must be a holomorphic embedding and lead to
certain rigidity result when $N$ satisfies some natural additional
geometric properties.