Séminaires

A venir

Les principaux séminaires de l’équipe ont lieu le lundi aux horaires suivants :

  • Séminaire de géométrie différentielle : 14h-15h
  • Séminaire de géométrie complexe : 15h30-16h30

Les responsables sont Damian Brotbeck pour la géométrie complexe et Benoit Daniel pour la géométrie différentielle.


The SYZ conjecture for singular moduli spaces of sheaves on K3 surfaces

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 26 janvier 2026 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Claudio Onorati Résumé :
I will report about my recent joint work with Angel Rios Ortiz on the SYZ conjecture for a special class of singular symplectic varieties. The SYZ conjecture predicts that nef and isotropic line bundles are associated to lagrangian fibrations. After having recalled some generalities about symplectic varieties and the SYZ conjecture, I will state the main result and explain the main ideas behind its proof.

Structures de produits conformes sur les variétés kähleriennes compactes

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 26 janvier 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Andrei Moroianu Résumé :

Une structure de produit conforme sur une variété riemannienne $(M,g)$ est une connexion de Weyl (c’est-à-dire une connexion sans torsion qui préserve la classe conforme de la métrique $g$) à holonomie réductible. Nous classifions ces structures dans le cas où $M$ est compacte et $g$ est compatible avec une structure kählerienne. C’est un travail en collaboration avec Mihaela Pilca (Regensburg).


Séminaire commun de géométrie

Catégorie d’évènement : Géométrie Date/heure : 2 février 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Titre à préciser

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 9 février 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Laurent Hauswirth Résumé :

TBA

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 16 février 2026 15:30-16:30 Lieu : Oratrice ou orateur : Maxence Phalempin Résumé :

Séminaire commun de géométrie

Catégorie d’évènement : Géométrie Date/heure : 2 mars 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Titre à préciser

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 30 mars 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Hiba Bibi Résumé :

Séminaire commun de géométrie

Catégorie d’évènement : Géométrie Date/heure : 4 mai 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d’évènement : Géométrie Date/heure : 1 juin 2026 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Fulvio Gesmondo Résumé :

Geometric methods in computational complexity


Titre à préciser

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 15 juin 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Erwann Delay Résumé :

Séminaire commun de géométrie

Catégorie d’évènement : Géométrie Date/heure : 6 juillet 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Archives

Sur la factorisation de diviseurs compacts dans les revêtements non compacts

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 20 mars 2014 14:00-15:00 Lieu : Oratrice ou orateur : Pascal Dingoyan Résumé :

Je réponds, dans certains cas, à  une question de Frédéric Campana. Soit $C$ est une courbe sur une surface Kählérienne telle que :
1) $C.C=0$;
2) l’image du groupe fondamental de $C$ dans le groupe fondamental de $X$ est d’indice infini.
Alors un multiple de $C$ est une fibre d’une application holomorphe de $X$ vers une courbe.


Géométrie AdS, surfaces maximales et applications minimales lagrangiennes

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 25 février 2014 14:00-15:00 Lieu : Oratrice ou orateur : Jérémy Toulisse Résumé :

Au début des années 90, G. Mess découvrit de profondes relations entre la géométrie Anti-de Sitter (AdS) et la théorie de Teichmà¼ller. En particulier, il existe un liens entre applications minimales lagrangiennes entre surfaces et surfaces maximales dans des variétés AdS. Nous expliquerons ce liens et l’étendrons aux cas des variétés à  singularités coniques. Cela démontre l’existence d’un unique difféomorphisme minimal lagrangien entre surfaces hyperboliques à  singularités coniques.


Colloquium Grégoire Allaire, "Optimisation topologique de structures et fabrication additive"

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 24 février 2014 14:00-15:00 Lieu : Oratrice ou orateur : Kévin Langlois Résumé :

L’objet de cet exposé est l’étude des variétés algébriques normales affines complexes munies d’une opération d’un tore algébrique. Nous rappellerons une description combinatoire du à  Altmann et à  Hausen dans le cas o๠l’orbite générale est de codimension un. Ensuite, nous donnerons quelques résultats nouveaux les concernant.


Sous-variétés minimales de codimension 2 dans des groupes de Lie compacts.

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 18 février 2014 14:00-15:00 Lieu : Oratrice ou orateur : Marina Ville (CNRS Tours) Résumé :

Je décrirai des exemples de sous-variétés minimales de codimension 2 dans des groupes de Lie compacts, essentiellement dans SU(n). Ces constructions, qui ont été réalisées avec Sigmundur Gudmundsson et Martin Svensson, s’inscrivent dans la continuité des travaux de ces deux auteurs sur les morphismes harmoniques d’un groupe de Lie G dans le plan complexe: il s’agit d’ applications harmoniques dont les fibres régulières sont des sous-variétés minimales. Je rappellerai la définition des morphismes harmoniques dans le cas plus général ainsi que les notions de théorie des représentations utilisées dans la construction.


Métriques de Kähler-Einstein à  singularités coniques

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 17 février 2014 14:00-15:00 Lieu : Oratrice ou orateur : Henri Guenancia Résumé :

Je présenterai un travail en collaboration avec Mihai Paun dans lequel nous démontrons l’existence de métriques de Kähler Einstein à  singularités coniques le long d’un diviseur à  croisement normaux. Si le temps le permet, j’expliquerai aussi comment généraliser ces résultats au cadre singulier des paires klt d’une part et à  celui ces métriques à  singularités mixtes cusp et coniques d’autre part. On verra également le lien avec des théorèmes d’annulation de champs de tenseurs holomorphes orbifoldes.


Géométrie non commutative et inégalité de Vafa-Witten en géométrie conforme.

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 4 février 2014 14:00-15:00 Lieu : Oratrice ou orateur : Raphaà«l Ponge Résumé :

Existence of nonparametric solutions for a capillary problem in warped products.

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 28 janvier 2014 14:00-15:00 Lieu : Oratrice ou orateur : Gabriela Wanderley Résumé :

Constructions de surfaces minimales périodiques et d'anneaux minimaux dans Sol3

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 7 janvier 2014 14:00-15:00 Lieu : Oratrice ou orateur : Christophe Desmonts Résumé :

Déformation d'applications harmoniques tordues et variation de l'énergie

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 6 janvier 2014 14:00-15:00 Lieu : Oratrice ou orateur : Marco Spinaci Résumé :

Les propriétés de l’espace de modules des fibrés de Higgs sur une surface de Riemann compacte construit par N. Hitchin en 1987 ont été l’objet de nombreux travaux. Notamment, C. Simpson, en 1994, a donné une généralisation de la construction de cet espace pour toutes variétés projectives lisses. Pourtant, l’étude de la fonction de l’énergie d’un champs de Higgs (qui est plus généralement définie sur l’espace des représentations du groupe fondamental de n’importe quelle variété riemannienne) n’a pas encore été systématiquement développé en dimension supérieure. Après avoir résumé les idées fondamentales de la correspondance entre représentations et fibrés de Higgs obtenue par les application harmoniques, on se propose dans cet exposé de présenter une approche à  cet étude par le développement d’une théorie des déformations des applications harmoniques tordues jusqu’au second ordre. Cette théorie permet d’établir des formules pour les variations de l’énergie, avec lesquelles on arrive à  démontrer l’identification entre les points critiques de l’énergie et les variations polarisées de structure de Hodge complexes. On peut aussi démontrer que l’énergie est un potentiel de Kähler pour la structure complexe naturelle et finalement calculer les valeurs propres de la matrice hessienne de l’énergie.


Surfaces minimales et compactifications de $mathbb{H}^2times mathbb{R}$

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 17 décembre 2013 14:00-15:00 Lieu : Oratrice ou orateur : Benoît Kloeckner Résumé :
51 52 53 54 55 56 57