Séminaires

Les principaux séminaires de l’équipe ont lieu le lundi aux horaires suivants :

  • Séminaire de géométrie différentielle : 14h-15h
  • Séminaire de géométrie complexe : 15h30-16h30

Les responsables sont Damian Brotbeck pour la géométrie complexe et Benoit Daniel pour la géométrie différentielle.


Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 6 janvier 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Classifying Fano 4-folds with a rational fibration onto a 3-fold

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 20 janvier 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Saverio Secci Résumé :

In this talk I will present a joint work with C. Casagrande, in which we study smooth complex Fano 4-folds with a rational fibration onto a 3-fold. After an introduction on the setting and motivation, I will discuss our main result: if X is Fano 4-fold with a rational fibration onto a 3-fold and it is not a product of surfaces, then the Picard number of X is at most 9, and the bound is sharp. Moreover, I will present a classification result in a special case within the setting above, and show new examples of Fano 4-folds with large Picard number.


Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 3 février 2025 14:00-16:00 Lieu : Oratrice ou orateur : Stefan Kebekus Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 3 mars 2025 14:00-16:00 Lieu : Oratrice ou orateur : Hsueh-Yung Lin Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 3 mars 2025 14:00-16:00 Lieu : Oratrice ou orateur : Diego Izquierdo Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 28 avril 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 5 mai 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 juin 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Archives

Fibrés de Fock et composantes de Hitchin

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 12 février 2024 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Alexander Thomas Résumé :

L’étude des représentations d’un groupe fondamental d’une surface dans un groupe de Lie est décrite par la variété des caractères. Je présente une nouvelle approche, les fibrés de Fock, pour étudier les variétés des caractères. Malgré des similarités avec la théorie de Hodge nonabelienne, la différence cruciale est qu’aucune structure complexe est fixée sur la surface. Les fibrés de Fock sont étroitement liés aux structures complexes supérieures et mènent à un lien avec la composante de Hitchin. Travail en commun avec Georgios Kydonakis et Charlie Reid.


Généralisations des surfaces de Willmore en dimension 4

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 29 janvier 2024 15:30-16:30 Lieu : Oratrice ou orateur : Dorian Martino Résumé :

Mondino-Nguyen ont montré en 2018 que l’énergie de Willmore est essentiellement la seule fonctionnelle, définit pour des surfaces fermées de l’espace euclidien de dimension 3, qui soit invariante par transformations conformes. Motivés par la correspondance AdS/CFT, diverses généralisations des surfaces de Willmore ont été étudiées pour des hypersurfaces fermées de l’espace euclidien de dimension 5. Cependant, le nombre de fonctionnelles invariantes conformes pour des variétés de dimension 4 est beaucoup plus important qu’en dimension 2. En particulier, cette diversité complique le choix d’une généralisation convenable.

En dimension 2, la dualité de Bryant est un outil important de l’étude des surfaces de Willmore. Elle permet d’exhiber une quartique holomorphe, de classifier les sphères Willmore, de construire l’équivalent des données d’Enneper-Weierstrass pour les surfaces minimales… Dans cette présentation, nous verrons qu’une généralisation de cette dualité en dimension 4 permet de mettre en exergue deux fonctionnelles invariantes conformes.


Sur la structure locale des champs analytiques.

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 29 janvier 2024 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Doan An-Khuong Résumé :

Le but de cet exposé est d’introduire une question intéressante proposée par D. Rydh sur une version analytique de son théorème de type Luna qui dit qu’autour d’un point dont le stabilisateur est linéairement réductif, tout champ algébrique raisonnable est étale-localement équivalent à un champ de quotient. Après avoir formulé la version analytique, on la vérifie pour un (ou deux si le temps permet) espace(s) de modules classique(s): l’espace de Riemann (ou Teichmüller) de structures complexes, dont la version de champs analytiques a été récemment construite par L. Meersseman.


Séminaire de géométrie complexe

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 15 janvier 2024 14:00-15:00 Lieu : Oratrice ou orateur : Vladimir Lazić Résumé :

Title: Rigid currents and birational geometry

Abstract: Rigid currents are closed positive currents whose cohomology class contains only one closed positive current. This notion originates (probably) from complex dynamics and has sporadically occured in different contexts. I will survey some of these, and then show how rigid currents occur when one studies the Abundance conjecture in birational geometry. This is joint work with Zhixin Xie.


Séminaire commun de géométrie

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 8 janvier 2024 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 18 décembre 2023 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Résumé :

Sur la positivité maximale du cotangent logarithmique associé à un arrangement d’hyperplans

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 11 décembre 2023 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Clara Dérand Résumé :

Une variété complexe est dite hyperbolique (au sens de Brody) si elle ne contient pas de courbe entière (non constante). Soit (X,D) est une paire logarithmique lisse, avec X une variété projective lisse et D un diviseur à croisements normaux. Le fibré cotangent logarithmique associé ne peut jamais être ample (on a un quotient trivial en restriction à chaque composante de D). On peut cependant montrer que si ce fibré est « le plus ample possible » (on dira qu’il est ample modulo D), alors le complémentaire X\D est hyperbolique. Plus généralement, on peut étudier la position des courbes entières via la positivité du cotangent logarithmique.

Dans cet exposé, on considérera le cas où D est un arrangement d’hyperplans en position générale dans Pn. On montrera une condition géométrique sur la position des hyperplans pour que le cotangent logarithmique soit ample modulo D, en construisant explicitement des droites d’obstruction. En particulier, on verra que pour au moins 4n-2 hyperplans génériques, le cotangent logarithmique est ample modulo D.


Groupe de Travail "Surfaces K3" : Espaces de modules

Catégorie d'évènement : Groupe de travail Géométrie Date/heure : 11 décembre 2023 10:15-12:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Benoît Cadorel Résumé :
J’exposerai deux points de vue principaux sur la construction d’espaces de modules de surfaces K3. D’une part, la théorie du schéma de Hilbert permet pour chaque entier d, de construire un espace de modules grossiers pour les K3 admettant une polarisation de carré 2d (dans la catégorie des espaces algébriques en général, mais on sait aussi construire cet espace comme variété quasi-projective dans le cadre complexe). D’autre part, la théorie des variations de structures de Hodge permet de construire un espace de modules fin pour les K3 marquées. Cette construction est rendue possible par le théorème de Torelli global joint au théorème de surjectivité de l’application des périodes, dont j’expliquerai les énoncés.
Je donnerai aussi quelques éléments permettant de décrire géométriquement cet espace, qui apparaît comme variété complexe non-séparée revêtant le domaine de périodes des surfaces K3. On verra notamment que l’on peut retrouver les espaces de modules de K3 polarisées comme quotients par des réseaux arithmétiques d’hypersurfaces adéquates dans cet espace de modules fin.

Séminaire groupes algébriques

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 4 décembre 2023 14:00-15:00 Lieu : Oratrice ou orateur : Paul Philippe Résumé :

Titre : Ordre de Bruhat affine et théorie de Kazhdan-Lusztig

La structure d’un groupe réductif (ou plus généralement de Kac-Moody) est largement controlée par son groupe de Weyl. En particulier, si G est un groupe de Kac-Moody et B un sous-groupe de Borel, la théorie de Kazhdan-Lusztig relie étroitement la géométrie de la variété de drapeaux G/B avec la structure de Coxeter de W.
Si l’on étudie G au dessus d’un corps discrètement valué, comme les corps p-adiques, on peut remplacer B par le groupe d’Iwahori I pour prendre en compte l’existence d’une valuation. Le groupe de Weyl doit être remplacé par une affinisation W^+. Lorsque G est un groupe réductif, W^+ est encore un groupe de Coxeter ce qui permet d’étendre la théorie de Kazhdan-Lusztig à la variété de drapeaux affines G/I. Ce n’est plus vrai si G est un groupe de Kac-Moody général, en particulier il n’y a pas d’ordre de Bruhat naturel sur W^+. Néanmoins en 2018, D. Muthiah et D. Orr ont pu définir une relation d’ordre et une longueur associée sur W^+ analogue aux ordres de Bruhat. Dans cet exposé, je présenterais plusieurs propriétés de cet ordre que nous avons obtenues avec Auguste Hébert et, si le temps le permet, j’expliquerais leur importance pour la construction d’une théorie de Kazhdan-Lusztig adaptée à ce cadre.


Mini-cours "Syzygies and Hilbert schemes"

Catégorie d'évènement : Géométrie Date/heure : 4 décembre 2023 10:30-12:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Daniele Agostini (Tübingen) Résumé :
1 2 3 4 5 6 7 8 9 10 11 12