A venir
Les principaux séminaires de l’équipe ont lieu le lundi aux horaires suivants :
- Séminaire de géométrie différentielle : 14h-15h
- Séminaire de géométrie complexe : 15h30-16h30
Les responsables sont Damian Brotbeck pour la géométrie complexe et Benoit Daniel pour la géométrie différentielle.
Groupes d'automorphismes des surfaces del Pezzo de degré 5
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 10 novembre 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Aurore Boitrel Résumé :Spectral properties of symmetrized AMV operators
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 10 novembre 2025 15:30-16:30 Lieu : Oratrice ou orateur : Manuel Dias Résumé :The symmetrized Asymptotic Mean Value Laplacian \tilde{\Delta}, is obtained as limit of approximating integral operators \tilde{\Delta}_r, and is an extension of the classical Euclidean Laplace operator to the realm of metric measure spaces. We show that in the limit as r->0, as the operators eventually admit isolated eigenvalues defined via min-max procedure on any compact uniformly locally doubling metric measure space. Then we prove L^2 and spectral convergence of \tilde{\Delta}_r to the Laplace-Beltrami operator of a compact Riemannian manifold, imposing Neumann conditions when the manifold has a non-empty boundary.
Rigidity and Monotonicity of the Hawking Energy on Hawking Surfaces
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 17 novembre 2025 15:30-16:30 Lieu : Oratrice ou orateur : Alejandro Penuela Diaz Résumé :The Hawking energy is one of the simplest quasi-local energy definitions in general relativity. Despite its simplicity, the Hawking energy has faced challenges due to ambiguities when applied to general surfaces. In this talk, I will present recent results demonstrating that the Hawking energy exhibits key physical and mathematical properties—non-negativity, rigidity,
and monotonicity—when evaluated on a generalization of area-constrained Willmore surfaces (Hawking surfaces). In particular such properties hold for area-constrained Willmore surfaces on manifolds with nonnegative scalar curvature. These results establish Hawking surfaces as a useful tool for evaluating the Hawking energy and reinforce its potential as a meaningful tool for understanding gravitational phenomena.
Groupe de travail de géométrie – Variétés kählériennes compactes uniréglées V
Catégorie d’évènement : Géométrie Date/heure : 21 novembre 2025 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Damian Brotbek Résumé :Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 5 janvier 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Titre à préciser
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 26 janvier 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Andrei Moroianu Résumé :Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 2 février 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 2 mars 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 4 mai 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 1 juin 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 6 juillet 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Archives
Groupe de travail de géométrie – Variétés kählériennes compactes uniréglées III
Catégorie d’évènement : Géométrie Date/heure : 24 octobre 2025 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Frédéric Campana Résumé :Morse index stability for Yang-Mills connections
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 20 octobre 2025 15:30-16:30 Lieu : Oratrice ou orateur : Mario Gauvrit Résumé :We investigate the stability of the Morse index for a sequence of Yang–Mills connections on closed 4-manifolds under bubble-tree convergence. As critical points of a conformally invariant energy, Yang–Mills connections share close ties with harmonic maps in various respects. At the same time, their analysis is simpler provided one works in a suitable gauge, namely the Coulomb gauge. Motivated by applications to the construction of non-stable solutions of the Yang–Mills equations, this work extends recent methods developed by Da Lio–Gianocca–Rivière for index stability to the Yang–Mills framework, employing sharp decay estimates to show that the neck regions contribute positively to the second variation.
Revêtements Galoisiens rationnels entre variétés Calabi-Yau
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 20 octobre 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Matteo Verni Résumé :Entre variétés à canonique trivial de la même dimension il y a très peu de morphismes dominants, car ils ne peuvent pas ramifier. Par contre, il y a beaucoup d’applications rationnelles dominantes. Parmi elles, celles qui sont Galoisiennes sont les plus géométriques, car elles permettent de voir le codomaine comme un quotient du domaine par un groupe fini (à birationalités près). Nous allons examiner quelles sont les restrictions que la géométrie d’une variété projective lisse avec canonique trivial impose sur ses revêtements rationnels Galoisiens. On applique ces restrictions aux variétés hyperkählériennes pour comprendre lesquelles peuvent être obtenues comme quotients birationnels d’un groupe fini agissant sur une autre variété à canonique trivial, ce qui donne des restrictions à des questions de Alexeev et Laza.
Groupe de travail de géométrie – Variétés kählériennes compactes uniréglées II
Catégorie d’évènement : Géométrie Date/heure : 17 octobre 2025 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Bastien Philippe Résumé :Feuilletages de Calabi-Yau et déformations
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 13 octobre 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Rémi Danain-Bertoncini Résumé :Groupe de travail de géométrie – Variétés kählériennes compactes uniréglées
Catégorie d’évènement : Géométrie Date/heure : 10 octobre 2025 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Benoît Cadorel Résumé :Isotrivialité des familles de courbes paramétrées par l’espace des modules des variétés abéliennes
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 22 septembre 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Éloan Rapion Résumé :Mok a déterminé les lieux de base stables et augmentés associés au fibré cotangent d’un quotient compact d’un domaine symétrique borné irréductible. Dans cet exposé, on montre que son résultat se généralise aux quotients non compacts de volume fini. Cela nécessite de considérer des métriques singulières, pour l’étude desquelles on utilise les travaux de Kollár en théorie de Hodge variationnelle. On obtient comme application l’isotrivialité des familles séparables de courbes paramétrées par l’espace des modules des variétés abéliennes sur tout corps, à l’exception d’un nombre fini de caractéristiques positives.
Hyperbolicity des puissances symétriques et applications algébroïdes
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 15 septembre 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Damian Brotbek Résumé :Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 8 septembre 2025 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Auguste Hébert Résumé :Vers une connectification des immeubles supérieurs
Soit $G$ un groupe réductif déployé sur un corps réellement valué, par exemple $G=SL_n(F)$, où $F=k((t))$ pour $n$ un entier naturel et $k$ un corps. Afin d’étudier un tel groupe, Bruhat et Tits lui ont associé un objet de nature géométrico-combinatoire $I(G)$, appelé immeuble de Bruhat-Tits, sur lequel $G$ agit. On peut alors étudier $G$ via son action sur $I(G)$ et transformer une question de nature algébrique en une question plus géométrique. Par exemple si $G=SL_2(k((t)))$, où k est un corps, son immeuble est un arbre homogène de valence $|k|+1$.
Soit maintenant $F$ un corps muni d’une valuation quelconque, c’est à dire non forcément réelle. On peut par exemple prendre $F=k((t_1))((t₂))…((t_m))$, où m est un entier naturel, qui est naturellement muni d’une valuation à valeurs dans $\mathbb{Z}^m$. Afin d’étudier des groupes réductifs déployés sur de tels corps, Bennett a introduit dans les années 90 une notion d’immeubles supérieurs qui généralise la notion d’immeubles de Bruhat-Tits. Avec Izquierdo et Loisel, nous avons associé à un tel groupe un immeuble supérieur, généralisant ainsi la construction de Bruhat et Tits. Lorsque la valuation est à valeurs réelles, l’immeuble de Bruhat-Tits est connexe et contractile, ce qui permet d’appliquer des techniques de topologie algébrique pour étudier le groupe. En revanche, lorsque la valuation n’est pas réelle (par exemple si $m\geq 2$), l’immeuble n’est pas connexe. Afin de généraliser certains résultats connus pour des valuations réelles, il semble donc utile de « connectifier » l’immeuble c’est à dire de rajouter des points pour le rendre connexe. Je parlerai d’avancées dans cette direction, obtenues avec Bravo, Izquierdo et Loisel.