A venir
Les principaux séminaires de l’équipe ont lieu le lundi aux horaires suivants :
- Séminaire de géométrie différentielle : 14h-15h
- Séminaire de géométrie complexe : 15h30-16h30
Les responsables sont Damian Brotbeck pour la géométrie complexe et Benoit Daniel pour la géométrie différentielle.
The geometry of Kerr black holes and the Teukolsky equation.
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 8 décembre 2025 15:30-16:30 Lieu : Oratrice ou orateur : Pascal Millet Résumé :An important family of solutions to the Einstein vacuum equations is given by the Kerr metrics, which describe rotating black holes. In this talk, I will present some important geometric properties of these spacetimes relevant to the study of classical field equations such as the scalar waves, electromagnetism and linearized gravity. As observed by Teukolsky, by exploiting a special algebraic property of the spacetime, it is possible to decouple certain components of the fields from the rest of the system, leading to the so-called Teukolsky equation. Solutions of this equation can then be analyzed to recover information about the full system.
Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 5 janvier 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Titre à préciser
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 26 janvier 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Andrei Moroianu Résumé :Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 2 février 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Titre à préciser
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 9 février 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Laurent Hauswirth Résumé :Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 2 mars 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Titre à préciser
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 30 mars 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Hiba Bibi Résumé :Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 4 mai 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 1 juin 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 6 juillet 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Archives
Study of a Lagrangian subvariety in the EPW cube
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 24 novembre 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Francesca Rizzo Résumé :EPW cubes are six-dimensional projective hyper-Kähler varieties constructed by Iliev, Kapustka, Kapustka, and Ranestad. Their construction and properties share many similarities with the double EPW sextics introduced by O’Grady. Both double EPW sextics and EPW cubes belong to the few known families of hyper-Kähler varieties for which one can give a geometric description of a general element in the moduli space. Moreover, both admit an anti-symplectic involution whose fixed locus is a Lagrangian submanifold.
In this talk we will review the theory of hyper-Kähler varieties and the role of Lagrangian subvarieties. We will then talk about EPW cubes, and present some recent results on the fixed locus of the anti-symplectic involution.
Groupe de travail de géométrie – Variétés kählériennes compactes uniréglées V
Catégorie d’évènement : Géométrie Date/heure : 21 novembre 2025 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Damian Brotbek Résumé :Rigidity and Monotonicity of the Hawking Energy on Hawking Surfaces
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 17 novembre 2025 15:30-16:30 Lieu : Oratrice ou orateur : Alejandro Penuela Diaz Résumé :The Hawking energy is one of the simplest quasi-local energy definitions in general relativity. Despite its simplicity, the Hawking energy has faced challenges due to ambiguities when applied to general surfaces. In this talk, I will present recent results demonstrating that the Hawking energy exhibits key physical and mathematical properties—non-negativity, rigidity,
and monotonicity—when evaluated on a generalization of area-constrained Willmore surfaces (Hawking surfaces). In particular such properties hold for area-constrained Willmore surfaces on manifolds with nonnegative scalar curvature. These results establish Hawking surfaces as a useful tool for evaluating the Hawking energy and reinforce its potential as a meaningful tool for understanding gravitational phenomena.
Uniformization of log Fano pairs and equality in the Miyaoka–Yau inequality
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 17 novembre 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Louis Dailly Résumé :At the beginning of the 20th century, it was known that any compact connected, simply connected Riemann surface is biholomorphic to the projective line.
Subsequently, several characterizations of projective spaces were established. For instance, Siu and Yau stated that projective spaces are the only Kähler manifolds with positive holomorphic bisectional curvature, and Mori proved that they are the only projective manifolds that have an ample tangent bundle. In a different direction, projective spaces are the only Kähler–Einstein manifolds with a positive constant satisfying the equality in the Miyaoka–Yau inequality. This result originating from uniformization theory was generalized in the singular setting by Greb, Kebekus, Peternell and Druel, Guenancia, Păun. More precisely, they characterize singular quotients of $\mathbb{P}^n$ by finite groups acting freely in codimension 1. The aim of this talk is to discuss a generalization of Greb–Kebekus–Peternell’s result in order to characterize quotients of $\mathbb{P}^n$ by any group action.
Spectral properties of symmetrized AMV operators
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 10 novembre 2025 15:30-16:30 Lieu : Oratrice ou orateur : Manuel Dias Résumé :The symmetrized Asymptotic Mean Value Laplacian \tilde{\Delta}, is obtained as limit of approximating integral operators \tilde{\Delta}_r, and is an extension of the classical Euclidean Laplace operator to the realm of metric measure spaces. We show that in the limit as r->0, as the operators eventually admit isolated eigenvalues defined via min-max procedure on any compact uniformly locally doubling metric measure space. Then we prove L^2 and spectral convergence of \tilde{\Delta}_r to the Laplace-Beltrami operator of a compact Riemannian manifold, imposing Neumann conditions when the manifold has a non-empty boundary.
Groupes d'automorphismes des surfaces del Pezzo de degré 5
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 10 novembre 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Aurore Boitrel Résumé :Groupe de travail de géométrie – Variétés kählériennes compactes uniréglées III
Catégorie d’évènement : Géométrie Date/heure : 24 octobre 2025 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Frédéric Campana Résumé :Morse index stability for Yang-Mills connections
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 20 octobre 2025 15:30-16:30 Lieu : Oratrice ou orateur : Mario Gauvrit Résumé :We investigate the stability of the Morse index for a sequence of Yang–Mills connections on closed 4-manifolds under bubble-tree convergence. As critical points of a conformally invariant energy, Yang–Mills connections share close ties with harmonic maps in various respects. At the same time, their analysis is simpler provided one works in a suitable gauge, namely the Coulomb gauge. Motivated by applications to the construction of non-stable solutions of the Yang–Mills equations, this work extends recent methods developed by Da Lio–Gianocca–Rivière for index stability to the Yang–Mills framework, employing sharp decay estimates to show that the neck regions contribute positively to the second variation.
Revêtements Galoisiens rationnels entre variétés Calabi-Yau
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 20 octobre 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Matteo Verni Résumé :Entre variétés à canonique trivial de la même dimension il y a très peu de morphismes dominants, car ils ne peuvent pas ramifier. Par contre, il y a beaucoup d’applications rationnelles dominantes. Parmi elles, celles qui sont Galoisiennes sont les plus géométriques, car elles permettent de voir le codomaine comme un quotient du domaine par un groupe fini (à birationalités près). Nous allons examiner quelles sont les restrictions que la géométrie d’une variété projective lisse avec canonique trivial impose sur ses revêtements rationnels Galoisiens. On applique ces restrictions aux variétés hyperkählériennes pour comprendre lesquelles peuvent être obtenues comme quotients birationnels d’un groupe fini agissant sur une autre variété à canonique trivial, ce qui donne des restrictions à des questions de Alexeev et Laza.