Séminaires

Exposés à venir

Benoît Daniel (IÉCL) -- titre à venir

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 28 novembre 2024 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Résumé :

Un crible minorant effectif pour les entiers friables

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 28 novembre 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Adrien Mounier (Aix-Marseille Université) Résumé :

Soient $\mathcal{A}$ un ensemble fini d’entiers naturels non-nuls et $y \geq 1$. Nous donnons une minoration effective du cardinal de l’ensemble $\{n\in\mathcal{A} ; p|n \Rightarrow p \leq y\}$ sous la condition d’une bonne connaissance du niveau de répartition de l’ensemble $\mathcal{A}$. Quelques conséquences seront ensuite abordées, dont une application aux valeurs friables de polynômes ou de formes binaires à coefficients entiers, puis une application aux entiers friables voisins.


Journée à l'honneur de David Vogan

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 5 décembre 2024 00:00-23:59 Lieu : Oratrice ou orateur : Résumé :

Une version effective du théorème des nombres premiers de Lu

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 5 décembre 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Vincent Gozé (Université du Littoral Côte d'Opale) Résumé :

Soit $\pi(x)$ le nombre de nombres premiers dans l’intervalle $[1,x]$. Nous savons depuis Euclide que $\pi(x)$ tend vers l’infini, mais à quelle vitesse ?  La réponse à cette question fut obtenue pour la première fois en 1896 par Jacques Hadamard et Charles-Jean de la Vallée Poussin qui démontrèrent, de manière indépendante, le théorème des nombres premiers: \[\pi(x)\sim \frac{x}{\log x}\quad(x\to \infty).\]
La démonstration de Hadamard et La Vallée Poussin utilise principalement les propriétés de la fonction zêta de Riemann et donc l’analyse complexe. Ce n’est qu’en 1949 qu’Erdős et Selberg publièrent indépendamment la première démonstration élémentaire (utilisant uniquement l’analyse réelle) du théorème des nombres premiers. Dans cet exposé, nous présenterons le développement historique des démonstrations élémentaires du théorème des nombres premiers puis nous donnerons une version effective du théorème des nombres premiers de Lu qui, à ce jour, donne le meilleur terme d’erreur en utilisant des méthodes élémentaires.


Pause pour arbre de Noël GNC à Orléans

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 12 décembre 2024 14:15-15:15 Lieu : Oratrice ou orateur : Résumé :

Sur une généralisation des puissances d'un entier (``powered numbers''). Application à un problème additif.

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 12 décembre 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Olivier Robert (Institut Camille Jordan) Résumé :

La notion de fonction puissance d’un nombre entier, introduite par Mazur (2000) fait intervenir le noyau (ou radical) d’un entier. Cette fonction lui  permet de définir une généralisation des puissances (« powered numbers »). Après avoir rappelé des résultats récents sur le noyau d’un entier, nous présenterons des résultats nouveaux sur la fonction de répartition des puissances généralisées, ainsi que sur un problème additif concernant la représentation d’un entier comme somme de puissances généralisées. Ce travail a été réalisé en collaboration avec J. Brüdern.


Pierre Bieliavksy -- titre à venir

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 13 février 2025 14:14-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Pierre Bieliavsky (Louvain-la-Neuve) Résumé :

Archives

K-theory for crossed products by Bernoulli shifts

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 11 avril 2024 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Siegfried Echterhoff (Münster) Résumé :

For a large class of unital $C^*$-algebras $A$, we  calculate the $K$-theory of reduced crossed products $A^{\otimes G}\rtimes_rG$ of Bernoulli shifts  by groups satisfying the Baum-Connes conjecture. In particular, we give explicit formulas for finite-dimensional $C^*$-algebras, UHF-algebras, rotation algebras, and several other examples. As an application, we obtain a formula for the $K$-theory of reduced $C^*$-algebras of wreath products $H\wr G$ for large classes of groups $H$ and $G$.
Our results are motivated and generalize earlier results of Xin Li about the K-theory of lamplighter groups.

(joint work with Sayan Chakraborty, Julian Kranz, and Shintaro Nishikawa)


Bornes inférieures pour le nombre maximal de points rationnels des courbes sur les corps finis

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 4 avril 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Elisa Lorenzo Garcia (Université de Neuchâtel) Résumé :
Pour un genre $g>0$ donné, nous donnons des bornes inférieures pour le nombre maximal de points rationnels d’une courbe projective lisse absolument irréductible de genre $g$ sur le corps fini $\mathbb{F}_q$.
D’abord, comme conséquence de la théorie de Katz-Sarnak, on obtient pour tout $g>0$ donné, tout $\epsilon>0$ et tout $q$ suffisamment grand, l’existence d’une courbe de genre $g$ sur $\mathbb{F}_q$ avec au moins $1+q+(2g−\epsilon)\sqrt{q}$ points rationnels.
Puis en utilisant les sommes de puissances des traces de Frobenius des courbes hyperelliptiques, on obtient des bornes inférieures pour lesquelles on peut controler le q le plus petit pour lequel elles sont valides.
Enfin, on donne une construction explicite qui produit des courbes de genre $g$ sur $\mathbb{F}_q$ avec au moins $1+q+4\sqrt{q}-32$ points.
En plus, on ira au-delà de la théorie de Katz-Sarnak pour essayer d’expliquer les asymétries observées dans la distribution du nombre de points.
Celui-ci est un travail conjoint avec J. Bergström, E. Howe et C. Ritzenthaler

On the spectrum of the Dirac operator on degenerating Riemannian surfaces

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 4 avril 2024 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Cipriana Anghel-Stan (Göttingen) Résumé :

We study the behaviour of the spectrum of the spin Dirac operator on degenerating families of Riemannian surfaces, when the length of a simple closed geodesic shrinks to zero. We work under the hypothesis that the spin structure along the pinched geodesic is non-trivial. It is well-known that the spectrum of an elliptic differential operator on a compact manifold varies continuously under smooth perturbations of the metric. The difficulty of our problem arises from the non-compactness of the limit surface, which is of finite area with two cusps.


Changements de signes de sommes de fonctions multiplicatives

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 28 mars 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Youness Lamzouri (IECL) Résumé :

Dans cet exposé, nous présenterons une méthode simple et efficace, qui a ses origines dans les travaux de Baker et Montgomery, et qui permet de produire des changements de signe de sommes de certaines fonctions multiplicatives réelles. Nous illustrons ensuite deux applications aux sommes de caractères de Dirichlet quadratiques ainsi qu’aux sommes de fonctions multiplicatives aléatoires de Rademacher. Ceci est basé sur un travail en commun avec O. Klurman et M. Munsch.


Ind-variétés de drapeaux multiples de type fini

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 21 mars 2024 15:45-16:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lucas Fresse (IÉCL) Résumé :
Une variété de drapeaux multiple X est un produit de variétés de drapeaux partiels, relatives à un même groupe G. Le groupe G agit diagonalement sur X et on s’intéresse au nombre d’orbites pour cette action, qui peut être fini ou infini. Dans le cas où G est un groupe classique, les variétés de drapeaux multiples de type fini ont été classifiées par Magyar-Weyman-Zelevinsky et Matsuki. Dans cet exposé, on s’intéresse au cas où G est un ind-groupe classique. Dans ce cas X est plus précisément une ind-variété de drapeaux multiple – un produit de ind-variétés de « drapeaux généralisés », selon un concept introduit par Dimitrov et Penkov. Dans ce cadre on classifie les ind-variétés X qui ont un nombre fini de G-orbites.

Weyl sums with Multiplicative Coefficients and Joint Equidistribution

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 21 mars 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Cynthia Bortolotto (ETH Zurich) Résumé :

In 1964, Hooley proved that for an irreducible polynomial $p$ in $\mathbb{Z}[x]$, the ratios $v/n$ for $v$ roots of the polynomial $p$ modulo $n$, are equidistributed modulo $1$. We prove joint equidistribution of these roots of polynomial congruences and polynomial values. As part of the proof, we generalize a result of Montgomery and Vaughan regarding exponential sums with multiplicative coefficients to the setting of Weyl sums.


Action du groupe d’automorphismes sur la jacobienne de la quartique de Klein.

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 21 mars 2024 14:15-15:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Anne Moreau (Orsay) Résumé :

Selon une conjecture de Bernstein et Schwarzman, le quotient d’un espace affine complexe par un groupe cristallographique irréductible engendré par des réflexions est un espace projectif à poids. La conjecture fut démontrée par Schwarzman et Tokunaga-Yoshida pour presque tous tels groupes en dimension 2, et par Looijenga, Bernstein-Schwarzman et Kac-Peterson pour ceux de type Coxeter en toute dimension.

Dans cet exposé je présenterai un travail en commun avec Dimitri Markushevich dans lequel nous démontrons la conjecture pour l’unique groupe cristallographique engendré par des réflexions en dimension 3 dont la partie linéaire est le groupe simple de Klein, selon la classification de Popov. La preuve repose sur le calcul de la fonction de Hilbert de l’algèbre des invariants des fonctions thêta. Depuis la publication de notre travail, Rains a proposé une approche de la conjecture en toute généralité.


Moyenne de la fonction Delta d’Erdős-Hooley

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 14 mars 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Régis de la Bretèche (Institut de Mathématiques de Jussieu-Paris Rive Gauche, Université Paris Cité) Résumé :

La fonction Delta d’Erdős-Hooley mesure la concentration des diviseurs d’un entier dans un intervalle dyadique. Récemment, Ford Koukoulopoulos et Tao ont amélioré l’encadrement de l’ordre moyen de cette fonction dû à Hall et Tenenbaum. Nous expliquerons les idées nouvelles de ces auteurs et expliquerons comment dans un travail en collaboration avec Gérald Tenenbaum nous avons précisé leur encadrement.


The Plasmonic Eigenvalue Problem, the Calderón Projector and the Dirichlet-to-Neumann Operator on Manifolds with Fibered Cusp Singularities

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 22 février 2024 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Elmar Schrohe (Hanovre) Résumé :

A plasmon of a bounded domain $\Omega\subseteq\mathbb R^n$ is a nontrivial bounded function on $\mathbb R^n\setminus \partial \Omega$ which is continuous at $\partial \Omega$ and whose interior and exterior normal derivative at $\partial \Omega$ have a constant ratio.
This ratio is called a plasmonic eigenvalue of $\Omega$.

Our longterm term goal is to understand this problem on a manifold with fibered cusp singularities. A prototypical example would be the complement of two touching strictly convex domains in $\mathbb R^n$.
The problem requires a precise analysis of the Dirichlet-to-Neumann operator in this setting. In a first step, we consider the Calderón projector for general elliptic differential operators of arbitrary order associated with this type of singularity, so-called $\phi$-differential operators. We show that the Calderón projector is a $\phi$-pseudodifferential operator in the sense of Mazzeo and Melrose. Next we study the Dirichlet-to-Neumann operator for Laplacians associated with fibered cusp metrics and obtain that it also is a $\phi$-pseudodifferential operator of order one.

This is a report on ongoing work with Karsten Fritzsch and Daniel Grieser.


Expansion, divisibilité et parité

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 15 février 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Harald Helfgott (CNRS, Institut de Mathématiques de Jussieu) Résumé :
Nous discuterons d’un graphe qui encode les propriétés de divisibilité des entiers par les nombres premiers. Nous montrons que ce graphe possède une propriété d’expansion locale forte p. p.  (presque partout). Nous obtenons plusieurs conséquences en théorie des nombres, au-delà de la traditionnelle barrière de parité, en combinant nos résultats avec ceux de Matomäki-Radziwill. Par exemple: pour la fonction de Liouville $\lambda$ (il s’agit de la fonction complètement multiplicative avec $\lambda(p)=-1$ pour chaque premier $p$), $$\frac{1}{\log x} \sum_{n\leq x} \frac{\lambda(n) \lambda(n+1)}{n} = O\left(\frac{1}{\sqrt{\log\log x}}\right)$$
ce qui est plus fort que les résultats bien connus de Tao et Tao-Teräväinen. Nous montrons aussi, par exemple, que $\lambda(n+1)$ a pour moyenne $0$ à presque toutes les échelles quand on suppose que $n$ a un nombre spécifique $\Omega(n)=k$ de diviseurs premiers, pour toute valeur « populaire » de $k$ (c-à-d $k=\log\log N+ O(\sqrt{\log\log N})$  pour $n\leq N$).

1 2 3 4 5 6 7 8 9 10 11 12