Exposés à venir
Archives
Méthodes de décomposition de domaine pour la simulation acoustique industrielle
Catégorie d'évènement : Séminaire des doctorants Date/heure : 3 mars 2020 14:00-15:00 Lieu : Oratrice ou orateur : Philippe Marchner Résumé :Dans le cadre de ma thèse, je m’intéresse à la simulation haute-fréquence de problèmes ondulatoires harmoniques en milieu non-homogène, qui posent d’importantes difficultés tant au niveau numérique que mathématique. D’un point de vue physique, ces problèmes décrivent la propagation d’ondes acoustiques en écoulement, aussi appelée aéroacoustique.
L’objectif principal est de développer une méthode de calcul parallèle efficace, dite de décomposition de domaine. Le principe est de partitionner le domaine de calcul en sous-domaines, puis d’itérer sur un problème défini aux interfaces qui connecte ces sous-domaines. La convergence de cette méthode dépend fortement de conditions de transmission définies aux interfaces.
Après vous avoir présenté le cadre de l’étude, je vous parlerai des outils mathématiques utilisés pour la construction de conditions de transmission appropriées. Ces outils sont issus de l’analyse microlocale et sont appliqués à l’opérateur Dirichlet-To-Neumann. Ensuite, je vous montrerai une application de la méthode pour un problème industriel 3D: le rayonnement acoustique d’un turboréacteur d’avion.
Introduction à la théorie du scattering unitaire
Catégorie d'évènement : Séminaire des doctorants Date/heure : 28 janvier 2020 14:00-15:00 Lieu : Oratrice ou orateur : Nicolas Frantz Résumé :A un système quantique, on associe un espace de Hilbert. L’équation de Schrödinger sur cet espace permet d’étudier l’évolution des états de ce système dans le temps. Dans le cas où l’opérateur de Schrödinger est auto-adjoint, la solution de l’équation est donnée par un groupe unitaire. Les états asymptotiquement libres (c’est-à-dire se comportant en temps infini comme s’il n’y avait aucune interaction) correspondent au sous espace spectral absolument continu associé à l’opérateur de Schrödinger. Physiquement, on souhaite que l’image d’un état asymptotiquement libre par le groupe reste asymptotiquement libre. C’est ce qu’on appelle la complétude asymptotique.
Dans un premier temps je décrirai les axiomes qui permettent de décrire un système quantique. J’expliquerai ensuite quelque point de théorie spectrale ce qui nous permettra de définir les opérateurs d’ondes et de donner une définition mathématique de complétude asymptotique.
Introduction aux feuilletages
Catégorie d'évènement : Séminaire des doctorants Date/heure : 21 janvier 2020 14:00-15:00 Lieu : Oratrice ou orateur : Kévin Massard Résumé :Intuitivement, un feuilletage est une partition d’une variété (M) en sous-variétés connexes de même dimension, appelées feuilles. On peut s’intéresser à l’espace des feuilles, défini comme le quotient de (M) par la relation d’équivalence (mathcal{R}) qui identifie deux points de (M) s’ils sont une une même feuille. Cependant, cet espace peut être très singulier. On construit alors le groupoïde d’holonomie, groupoïde de Lie qui contient (mathcal{R}). Nous illustrerons ces notions avec quelques exemples simples.
Le problème de Dirichlet sur des domaines singuliers
Catégorie d'évènement : Séminaire des doctorants Date/heure : 14 janvier 2020 14:00-15:00 Lieu : Oratrice ou orateur : Rémi Cöme Résumé :Le problème de Dirichlet sur un domaine lisse et borné (Omega subset mathbb{R}^n) est bien posé : il existe toujours une unique solution, et celle-ci possède la plus grande régularité possible. Lorsque (Omega) n’est pas lisse, par exemple pour un polyhèdre, cette dernière propriété n’est plus vraie. En faisant un changement de variable qui envoie la singularité « à l’infini », je montrerai comment des résultats sur des variétés non-compactes permette de retrouver cette régularité.
Ce sera l’occasion d’évoquer quelques outils fondamentaux de l’analyse fonctionnelle : théorème de Lax-Milgram, inégalité de Poincaré…
Plus d'informations à https://dev-iecl.univ-lorraine.fr/GTD/web/journeedoc
Catégorie d'évènement : Séminaire des doctorants Date/heure : 29 novembre 2019 14:00-15:00 Lieu : Oratrice ou orateur : Journée des doctorants Résumé :Le spectre des surfaces aléatoires
Catégorie d'évènement : Séminaire des doctorants Date/heure : 12 novembre 2019 14:00-15:00 Lieu : Oratrice ou orateur : Laura Monk Résumé :Le laplacien est un opérateur différentiel qui apparaît dans de nombreux problèmes physiques. Ses valeurs propres correspondent, par exemple, aux notes que l’on entend lorsque l’on tape sur un tambour. Elles sont fortement liées à la géométrie de l’objet qu’on étudie (aire, périmètre, longueur de certaines courbes…). L’objectif de ma thèse est de proposer une manière intuitive et pratique de choisir des surfaces aléatoirement, et de donner des informations sur la répartition des valeurs propres du laplacien sur ces surfaces.
Existence locale et globale pour les équations d'Einstein de la relativité générale.
Catégorie d'évènement : Séminaire des doctorants Date/heure : 22 octobre 2019 14:00-15:00 Lieu : Oratrice ou orateur : Olivier Graf Résumé :Les équations d’Einstein de la relativité décrivent le couplage entre le champ gravitationnel représenté par une métrique Lorentzienne g et la matière. Sous un certain choix de jauge, les équations d’Einstein peuvent s’écrire sous la forme d’un système d’EDP d’évolution, plus précisément des équations d’ondes quasilinéaires pour les composantes de la métrique (g), pour lesquelles le d’Alembertien est l’opérateur d’onde associé à la métrique Lorentzienne (g). La compréhension du comportement des solutions de ces équations en temps long est l’un des thèmes principaux de la relativité générale mathématique.
Au cours de cet exposé, je vais introduire les équations d’Einstein, expliquer certaines de leurs propriétés géométriques telles que leur covariance (de jauge) générale qui nous permettent de les considérer comme des EDP d’évolution (non-linéaires). J’expliquerai ensuite des idées générales pour aborder des résultats d’existence globaux (en temps) pour ces équations. En particulier, je soulignerai l’importance de donner du sens à des solutions à faible régularité pour obtenir des résultats d’existence globaux pour de nombreuses équations d’évolution non-linéaires.
Titre à venir
Catégorie d'évènement : Séminaire des doctorants Date/heure : 28 mai 2019 14:00-15:00 Lieu : Oratrice ou orateur : Fiona Gottschalk Résumé :Résume à venir
L'utilisation des algèbres d'opérateurs dans l'étude des EDP
Catégorie d'évènement : Séminaire des doctorants Date/heure : 2 avril 2019 14:00-15:00 Lieu : Oratrice ou orateur : Rémi Côme Résumé :Étant donnée une équation différentielle linéaire, une question
importante est de savoir si celle-ci admet une (unique) solution. Un
problème un peu moins contraignant est de se demander si l’équation est Fredholm, c’est à dire « presque inversible » (dans un sens qu’on
précisera). Mon but est de montrer que cette question conduit
naturellement à étudier certaines algèbres d’opérateurs (appelées (C^*)-algèbres) qui ont une structure très riche. On verra que quand
on regarde une équation différentielle sur (mathbb{R}^n), la (C^*)-algèbre associée
est commutative, ce qui fournit une réponse complète au problème.
J’essaierai d’exposer les questions plus générales qui restent ouvertes
lorsqu’on étudie des espaces moins réguliers.
Équivalence locale fondamentale du programme de Langlands
Catégorie d'évènement : Séminaire des doctorants Date/heure : 19 mars 2019 14:00-15:00 Lieu : Oratrice ou orateur : Ruotao Yang Résumé :Ce court exposé porte principalement sur l’équivalence locale fondamentale (FLE) de Dennis Gaitsgory du programme quantum Langlands. Son origine est l’équivalence géométrique Satake. Afin de déformer l’équivalence d’origine, nous devons passer au modèle de Whittaker (objets (N (K), chi)-équivalents d’une catégorie). L’équivalence fondamentale veut établir une équivalence entre le modèle de Whittaker et le modèle de Kazhan-Lusztig. Dans cet exposé, je vais expliquer pourquoi les gens s’intéressent à ce programme et aux progrès récents en la matière. Si nous avons plus de temps, je me concentrerai sur mes travaux récents sur la FLE entre la catégorie Whitter tordue sur drapeau affine et la catégorie représentation mixte du groupe quantique.