Exposés à venir
Archives
Singularities in Mean Curvature Flow
Catégorie d'évènement : Séminaire des doctorants Date/heure : 12 février 2025 10:45-12:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Maximilian Simon (University of Konstanz, Germany) Résumé :In this talk, we begin by examining the application of curvature flows to a broad range of geometric problems. Following this, we introduce the essential geometric concepts required to understand these flows. Thereafter we focus on the mean curvature flow and its singularities. In particular, we give an intuitive and accessible proof of why singularities must occur if the initial surface is compact. After conducting a graphical analysis of various types of singularities, we describe how these singularities can be modeled by self-similar solutions of the mean curvature flow. Motivated by this, we conclude the presentation by exploring a current area of research: investigating the behavior of solutions that are in the proximity of such self-similar solutions.
Quelques problèmes historiques d’optimisation, revisités grâce à la théorie du contrôle optimal
Catégorie d'évènement : Séminaire des doctorants Date/heure : 29 janvier 2025 10:45-12:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mabrouk Ben Jaba Résumé :Résolvons les équations du troisième degré !
Catégorie d'évènement : Séminaire des doctorants Date/heure : 15 janvier 2025 10:45-12:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Kilian Lebreton Résumé :Incursion en géométrie spectrale : Les géomètres sont-ils réellement meilleurs que les théoricien(ne)s des nombres ?
Catégorie d'évènement : Séminaire des doctorants Date/heure : 18 décembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Benjamin Florentin Résumé :Cela fait déjà plus de 150 ans que la recherche mathématique se casse les dents sur ce fameux problème appelé « Hypothèse de Riemann ». Portant sur les zéros non triviaux de la fonction Zêta de Riemann, elle est étroitement liée à la répartition des nombres premiers.
Mais comment est-ce possible ? Qu’est ce donc que la géométrie spectrale ? Devrait-on confier la mission de démontrer l’hypothèse de Riemann aux géomètres plutôt qu’aux théoricien(ne)s des nombres ?
Journée des doctorant.e.s
Catégorie d'évènement : Doctorants Date/heure : 20 novembre 2024 00:00-23:59 Lieu : Amphithéâtre 8 Oratrice ou orateur : Karim Ramdani et les doctorants de l'IECL Résumé :Journée conviviale d’exposés mathématiques pour les doctorants de l’IECL.
Programme :
Matin :
- 8h50 : Café d’accueil ;
- 9h20 : Karim Ramdani : Edition scientifique : un rapide survol des évolutions en cours ;
- 10h15 : Rodolphe Abou Assali : The Biharmonic Steklov Operator ;
- 10h55 : Pause ;
- 11h25 : Jérémy Dousselin : Arithmetic: from elementary statements to complex tools ;
- 12h15 : Pause repas
Après-midi :
- 14h : Aurélien Minguella : A brief introduction to stochastic partial differential equations ;
- 15h : Nathan Toumi : The level of distribution of the sum-of-digits function in arithmetic progressions ;
- 15h40 : Pause ;
- 16h10 : Valentin Schwinte : A minimization problem in the lowest Landau level, and centrosymmetric matrices ;
- 17h10 : Fin de la journée
Finite-time convergence to an $\epsilon$-efficient Nash equilibrium in potential games
Catégorie d'évènement : Séminaire des doctorants Date/heure : 4 novembre 2024 10:45-11:45 Lieu : Oratrice ou orateur : Anna Maria Maddux (EPFL) Résumé :This paper investigates the convergence time of log-linear learning to an $\epsilon$-efficient Nash equilibrium (NE) in potential games. In such games, an efficient NE is defined as the maximizer of the potential function. Previous literature provides asymptotic convergence rates to efficient Nash equilibria, and existing finite-time rates are limited to potential games with further assumptions such as the interchangeability of players. In this paper, we prove the first finite-time convergence to an $\epsilon$-efficient NE in general potential games. Our bounds depend polynomially on $1/\epsilon$, an improvement over previous bounds that are exponential in $1/\epsilon$ and only hold for subclasses of potential games. We then strengthen our convergence result in two directions: first, we show that a variant of log-linear learning that requires a factor $A$ less feedback on the utility per round enjoys a similar convergence time; second, we demonstrate the robustness of our convergence guarantee if log-linear learning is subject to small perturbations such as alterations in the learning rule or noise-corrupted utilities.
Analysis of an opinion dynamics model coupled with an external environmental dynamics.
Catégorie d'évènement : Séminaire des doctorants Date/heure : 23 octobre 2024 10:45-12:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Anthony Couthures (CRAN) Résumé :Self-Insurance Applied to Networks
Catégorie d'évènement : Séminaire des doctorants Date/heure : 2 octobre 2024 10:45-11:45 Lieu : Salle de séminaires Metz Oratrice ou orateur : Mariano Alejandro Vazquez Gaete (Université du Chili) Résumé :This work addresses the application of self-insurance in networks, where the network’s edges represent insured subjects facing losses. Each edge undertakes preventive efforts that influence the loss distribution, modeled as random variables. Insurance coverage is proportional, and a law-invariant coherent risk measure is considered to assess the network’s total risk. Furthermore, the work analyzes how preventive efforts impact the insurance cost and risk minimization. An optimization problem is proposed to determine the optimal levels of coverage and preventive effort, considering losses distributed according to a Pareto distribution. Through numerical techniques, specific cases, including global and local efforts, are studied to evaluate the model’s behavior in different scenarios.
0=1-1=-1+1=0, From Elementary School to Higher Algebras
Catégorie d'évènement : Séminaire des doctorants Date/heure : 5 juin 2024 10:45-11:45 Lieu : Salle de séminaires Metz Oratrice ou orateur : Keyao Peng Résumé :Ô mon beau commutateur !
Catégorie d'évènement : Doctorants Date/heure : 24 avril 2024 10:00-11:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Nathan Couchet Résumé :Cet exposé discute de quelques résultats originaux qui ne sont généralement pas enseignés dans un cursus classique du Supérieur en Mathématiques. Il s’agit en effet du lemme de Wielandt (1949), du théorème de Kleinecke-Shirokov (1957-1956) et du théorème de Fulglede-Putnam-Rosenblum (1950-1951-1958). Provenant historiquement de la théorie des algèbres d’opérateurs, il est en fait naturel de les traduire dans le langage des algèbres de Banach dont leur père, le mathématicien soviétique I. M. Gelfand, a démontré entre 1939 et 1941 la complémentarité singulière qui s’exprime entre algèbre et analyse.
C’est cette complémentarité qui est réaffirmée ici. Ces résultats gravitent tous autour de la notion de (non)-commutativité qui est le cœur de la mécanique quantique et de la théorie des opérateurs. Plusieurs démonstrations du théorème de Wielandt sont proposées dont l’une avec l’aide du théorème de Kleinecke-Shirokov. Les résultats ci-dessus sont mis en lumière par quelques réflexions dans l’algèbre $\mathcal{M}_n(\mathbb{C})$ des matrices carrées et par des questions personnelles sur les propriétés d’un couple $(a,b)$ d’éléments dans certaines $\mathbb{C}$-algèbres contraint à satisfaire une relation du type $[a,b]=\alpha a, ~ \alpha \in \mathbb{C}^*$. L’exposé est enrichi de remarques historiques et contextuelles sur la théorie des algèbres de Banach et des opérateurs.