Probabilities and Statistic seminar

Upcoming presentations

Local expansion properties of paracontrolled systems

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 3 April 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Nicolas Moench (Rennes) Résumé :
In recent years, the theories of regularity structures and paracontrolled calculus enabled the study of singular SPDE, providing the appropriate functional framework to handle renormalisation of these equations. While regularity structures uses local descriptions of distributions through generalized Taylor expansions,  paracontrolled calculus takes a more global approach, utilizing harmonic analysis and the concept of paracontrolled systems. We will present a result that connects these two theories by introducing a family of regularity structures that captures the local behavior of paracontrolled systems.

Advancing Copula Methods: Nonparametric Estimation, Smooth Testing, and Data-Driven Clustering

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 3 April 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Yves Ngounou Bakam (ENSAI) Résumé :

Copulas, introduced in the 1950’s and rediscovered in recent years, are powerful tools for modeling dependence structures between multidimensional variables. These tools are particularly valuable in fields like finance, insurance, economics, and biol- ogy, where understanding the relationships between variables is critical. Despite their generality, copulas can present significant challenges, particularly when estimating dependence structures in complex datasets, especially when dealing with data from different sources, scales, and shapes.

This work addresses three core challenges in copula modeling: estimation, testing, and clustering. We first propose a nonparametric copula density estimator based on Legendre orthogonal polynomials. A nonparametric copula estimator is then deduced by integration. Both estimates are based on a set of moments that define the copulas, and we’ll call them the copula coefficients. Flexible modeling is possible even when copula densities may not exist due to the complete characterization of these coeffi- cients. A data-driven method is introduced to select the optimal number of copula coefficients to use, and extensive simulations show the superior performance of our approach compared to existing methods.

Next, we propose a smooth test for comparing K ≥ 2, copulas simultaneously, based on differences in their copula coefficients. The procedure involves a two-step data-driven procedure. In the first step, the most significantly different coefficients are selected for all pairs of populations and the subsequent step utilizes these coefficients to identify populations that exhibit significant differences.

Finally, we use this test to develop a clustering method that automatically identifies populations with similar dependence structures. They approaches, implemented in the Kcop R package, are demonstrated through numerical studies and real-world applica- tions. This approach can be extended to the independent clustering in high dimension where work is ongoing.

This is joint work with Denys Pommeret.


Ed Cohen

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 24 April 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ed Cohen (Imperial College, London)) Résumé :

Bruno Ebner

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 15 May 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Bruno Ebner (Karlsruher Institut für Technologie) Résumé :

Colloquinte de l'équipe de Probabilités et Statisitiques

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 19 June 2025 09:00-12:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : TBA Résumé :

Jacek Wesolowski

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 26 June 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Jacek Wesolowski (Warsaw University of technology) Résumé :

Abonnement iCal

Past presentations

Extinction de populations faiblement inhomogènes en dimension deux

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 21 June 2018 10:45-11:45 Lieu : Oratrice ou orateur : Kilian Raschel Résumé :

Les populations composées de deux types d’individus (ou phénotypes) peuvent naturellement s’étudier grâce aux marches aléatoires planaires. Dans cet exposé je ferai un survol des techniques existantes et présenterai également de nouvelles idées pour l’étude de telles populations bidimensionnelles. Nous commencerons par le cas des populations homogènes, qui correspondent à  des modèles maintenant classiques de marches aléatoires dans le quart de plan. Nous présenterons ensuite une classe de marches aléatoires inhomogènes ayant une interprétation biologique naturelle. En passant nous lierons ces marches aléatoires inhomogènes avec d’autres processus, provenant de la théorie des files d’attente (joindre la file la plus courte), de processus de branchement, de modèles d’urnes et de théorie du potentiel. Il s’agit de différents travaux en commun avec Gerold Alsmeyer (Mà¼nster), Irina Kurkova (Paris 6), Pauline Lafitte (ECP) et Chi Tran (Lille).


Processus auto-répulsifs et métadynamique

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 14 June 2018 10:45-11:45 Lieu : Oratrice ou orateur : Pierre-André Zitt Résumé :

Un défaut habituel des algorithmes de Monte Carlo par chaînes de Markov
est leur difficulté à  explorer l’espace convenablement, ce qui mène
à  de grandes erreurs d’estimation. L’algorithme de “métadynamique”,
introduit par Bussi, Laio et Parrinello dans les années 2000 illustre l’une des stratégies possibles pour contourner la difficulté, en gardant la mémoire de la trajectoire passée et en l’utilisant pour biaiser le processus et le pousser vers des régions peu visitées.
L’analyse des processus sous-jacent n’est pas aisée en général ; nous discuterons d’un modèle jouet, que l’on peut traiter par des outils de la littérature des processus auto-répulsifs.

Travail en commun avec B. Jourdain et T. Lelièvre (Ecole des Ponts ParisTech).


Sur un algorithme d'exploration pour des jeux

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 31 May 2018 10:45-11:45 Lieu : Oratrice ou orateur : Nicolas Fournier Résumé :

On essaye d’étudier une classe d’algorithmes du type Monte Carlo Tree Search pour des jeux
déterministes à  trait alterné et information complète (du type morpion, puissance 4, etc.).


Unbiased simulation methods based on the parametrix II

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 19 April 2018 10:45-11:45 Lieu : Oratrice ou orateur : Arturo Kohatsu-Higa Résumé :

In these two presentations, we will first introduce using basic stochastic calculus, the parametrx method and then show how to deduce an unbiased simulation method and its interpretations.

We will discuss its advantages and shortcomings and then discuss how to solve them.
using a second
order method.
We will also give some simulation results and then time allowing we will discuss some other extensions.


Modèle alpha-CIR et ses applications en finance

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 12 April 2018 10:45-11:45 Lieu : Oratrice ou orateur : Simone Scotti Résumé :

Les processus de branchement avec immigration (CBI) est une classe bien étudiée en probabilité. En particulier, les travaux de Dawson et Li ont fourni une écriture
explicite d’une EDS pour un CBI général et prouvé l’unicité de sa solution.
Nous exploitons cette écriture pour proposer une extension du modèle CIR pour inclure une partie à  sauts dans le mécanisme de branchement. Nous considérons en particulier le cas alpha-stable à  cause de sa parcimonie et pour sa cohérence avec des résultats statistiques.
Nous montrons que ce modèle, appliqué aux taux d’intérêt, permet d’expliquer plusieurs effets
connus sur les marchés obligataires comme la persistance des taux faibles malgré la présence des grands sauts.
Une deuxième application est l’extension du modèle Heston pour inclure des sauts auto-excités dans le processus variance. Nous étudions en particulier le comportement de la volatilité implicite sur l’action et sur ses variance swap. Nous testons ce modèle sur les donnes du VIX en montrant que notre modèle fit bien.
Basé sur deux travaux avec Ying Jiao, Chunhua Ma et Chao Zhou.


Comportement asymptotique des matrices aléatoires de Wishart gaussiennes corrélées en grande dimension

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 5 April 2018 10:45-11:45 Lieu : Oratrice ou orateur : Ivan Nourdin Résumé :

Nous considérerons des matrices de Wishart en grande dimension, dont les coefficients sont des gaussiennes possiblement corrélées. Dans la situation “mémoire courte”, nous analyserons la proximité en loi de ces matrices avec l’ensemble gaussien correspondant quand la taille de la matrice tend vers l’infini, au sens de la distance de Wasserstein. Dans la situation “mémoire longue”, la situation est tout autre: nous mettrons en évidence la convergence vers une matrice aléatoire, que nous avons appelée matrice de Rosenblatt-Wishart. Cet exposé sera basé sur un travail en collaboration avec Guangqu Zheng (Univ. Luxembourg).


Percolation arithmétique

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 22 March 2018 10:45-11:45 Lieu : Oratrice ou orateur : Sébastien Martineau Résumé :

Si on part du réseau carré et efface chaque sommet indépendamment avec une certaine probabilité q, on effectue ce qui s’appelle une percolation de Bernoulli : cet important modèle de mécanique statistique rend compte des phénomènes d’infiltration en milieu poreux. Si on part du réseau carré mais cette fois-ci efface chaque sommet $(x,y)$ tel que $PGCD(x,y)neq 1$, on obtient maintenant un objet déterministe de nature arithmétique. Est-il possible de former une percolation (véritablement aléatoire donc) riche en informations arithmétiques ?

On va voir que cela est effectivement possible : on peut définir à  quoi ressemble le sous-graphe arithmétique précédent “vu depuis un point tiré uniformément dans le plan”. Ce sous-graphe aléatoire est obtenu selon un “crible d’Ératosthène aléatoire”. On fournira de ce graphe aléatoire une définition élémentaire, puis utilisera le lemme chinois pour faire le pont entre le sous-graphe arithmétique déterministe et sa contrepartie aléatoire. On abordera ensuite brièvement quelques problèmes naturels, comme l’étude des composantes connexes infinies du graphe aléatoire.


Mean-field games with branching

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 22 February 2018 10:45-11:45 Lieu : Oratrice ou orateur : Xiaolu Tan Résumé :

The mean-field game (MFG) consists in a differential game of a very large population on a finite or infinite time horizon. In this work, we study the mean-field games with branching, which allows to model the immigration, default and reproduction behaviour in the population. We show how the branching feature would change the formulation of the problem and then provide a general existence result of this new MFG. This is a joint work with Julien Claisse and Zhenjie Ren


Variational Inference in the Poisson lognormal model for multivariate analysis in ecology

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 15 February 2018 10:45-11:45 Lieu : Oratrice ou orateur : Julien Chiquet Résumé :

Many application domains such as ecology or genomics have to deal with multivariate count data. A typical example is the joint observation of the respective abundances of a set of species in a series of sites, aiming to understand the co-variations between these species. The Gaussian setting provides a canonical way to model such dependencies, but does not apply in general. We adopt here the Poisson lognormal (PLN) model, which is attractive since it allows one to describe multivariate count data with a Poisson distribution as the emission law, while all the dependencies is kept in an hidden friendly multivariate Gaussian layer. While usual maximum likelihood based inference raises some issues in PLN, we show how to circumvent this issue by means of a variational algorithm for which gradient descent easily applies. We then derive several variants of our algorithm to apply PLN to PCA, LDA and sparse covariance inference on multivariate count data. We illustrate our method on microbial ecology datasets, and show the importance of accounting for covariate effects to better understand interactions between species.


Economic and financial problematic in discrete-time models with multiple and non-dominated priors

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 8 February 2018 10:45-11:45 Lieu : Oratrice ou orateur : Laurence Carassus Résumé :

We will present some financial and economic problematics arising in discrete-time financial/economic models with a finite time horizon under non-dominated model uncertainty. This means that there exists a set of probability measures representing the agent beliefs and that this set is not dominated by a reference measure.

The technics are based on dynamic programming and measurable selection. We also use analytic sets which display the nice property of being stable by projection or countable unions and intersections but fail to be stable by complementation.