Upcoming presentations
Workshop "Singular SPDEs, invariant measures and discrete models"
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 4 December 2024 - 6 December 2024 00:00-23:59 Lieu : Salle de conférences Nancy Oratrice ou orateur : Organisé par Yvain Bruned Résumé :Planning, titres et résumés ici.
Perfect simulation of the invariant laws of Markovian load-balancing queueing networks
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 12 December 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Carl Graham (Polytechnique) Résumé :We define a wide class of Markovian load balancing queueing networks, including classic networks studied in the lively literature on the subject. Each network has identical single-server infinite-buffer queues and implements a load balancing policy to allocate each task at its arrival and possibly reallocate it at service completions. The purpose of the policy is to optimize server utilization under constraints such as limited information, real-time decision taking, and network topology. The queue length process is not necessarily exchangeable. The invariant law is in general not known even up to normalizing constant. We provide perfect simulation methods in view of Monte Carlo estimation of quantities of interest in equilibrium, for instance for performance evaluation. In this infinite multi-dimensional state space, we use an unusual preorder defining an order up to permutation of the coordinates, define a coupling in which networks in this class are dominated by the network with uniform routing, and implement dominated coupling from the past methods.
[The talk will be in French, but slides will be in English.]
Lucas Teyssier
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 19 December 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lucas Teyssier (Vancouver) Résumé :David Dereudre
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 9 January 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : David Dereudre (Université de Lille) Résumé :Carlo Bellingeri
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 16 January 2025 10:45-11:45 Lieu : Salle de séminaires Metz Oratrice ou orateur : Carlo Bellingeri (IECL) Résumé :(Exceptionnellement, le séminaire aura lieu à Metz et sera diffusé en visio en salle de conférence à Nancy.)
Thibault Lemoine
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 23 January 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Thibault Lemoine (Collège de France) Résumé :Benoît Nieto
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 6 February 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Benoît Nieto (École Polytechnique) Résumé :Ed Cohen
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 24 April 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ed Cohen (Imperial College, London)) Résumé :Bruno Ebner
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 15 May 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Bruno Ebner (Karlsruher Institut für Technologie) Résumé :Past presentations
Convergence de la DSF vers le BW
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 7 December 2017 10:45-11:45 Lieu : Oratrice ou orateur : TRAN Viet Chi Résumé :Nous considérons, sur le plan, la DSF (Directed Spanning Forest) qui est une forêt dirigée introduite par Baccelli et Bordenave (2007). Soient un processus de Poisson homogène dans le plan et une direction privilégiée (par exemple -e_y). Nous définissons l’ancêtre de chaque atome du processus de Poisson comme étant l’atome le plus proche (pour la distance euclidienne) et d’ordonnée supérieure. Le graphe résultant est la DSF : il s’agit d’une forêt, et même presque sà»rement d’un arbre. Sous de bonnes renormalisations, nous montrons que cette forêt converge en loi vers la toile Brownienne (BW, comme Brownian Web). Dans le cas de la DSF, la difficulté majeure est que la construction, pourtant simple et naturelle, crée des dépendances géométriques très complexes : au fur et à mesure de la construction du graphe, on accumule une information sur la vacuité de certaines régions (aléatoires) du plan. Les critères de convergence existant dans la littérature s’appuient sur des estimées obtenues en général par la construction de martingales ou chaînes de Markov, constructions qui sont impossibles ici. L’obtention de ces estimées clé s’appuie sur des idées de renouvellement fondées sur la géométrie du problème.
Ceci est un travail en commun avec D. Coupier, K. Saha et A. Sarkar.
Exposé à la Journée de la Fédération Charles Hermite "Apprentissage, machine learning" au LORIA
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 30 November 2017 10:45-11:45 Lieu : Oratrice ou orateur : Gilles Blanchard Résumé :Exposé dans le cadre du Forum des jeunes mathématiciennes et mathématiciens (lieu: amphi 5, Nancy)
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 23 November 2017 10:45-11:45 Lieu : Oratrice ou orateur : Marie-Pierre Etienne Résumé :Large-scale structure of the Universe: observer's point of view
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 16 November 2017 10:45-11:45 Lieu : Oratrice ou orateur : Elmo Tempel Résumé :The cosmic web is a highly complex geometrical pattern, with galaxy clusters at the intersection of filaments and filaments at the intersection of walls. Using observational data, we can visually recognize the main components of the cosmic web: voids, filaments and (super)clusters. However, to classify the cosmic web using mathematical methods is much more complicated task, which also involves the analysis of observational selection effects. In my talk I will give a brief overview about the observed large-scale structure together with the main selection effects that should be taken into account while analyzing the data.
Risques garantis pour les systèmes discriminants multi-classes à marge
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 9 November 2017 10:45-11:45 Lieu : Oratrice ou orateur : Yann Guermeur Résumé :La théorie statistique de l’apprentissage porte sur trois problèmes d’inférence empirique : la discrimination, la régression et l’estimation de la fonction de densité. Cette présentation se concentre sur la discrimination. Nous exposons les garanties disponibles sur les performances en généralisation des systèmes discriminants (risques garantis), en privilégiant le cas o๠ceux-ci s’appuient sur le concept de marge. L’intervalle de confiance de ces risques garantis dépend de trois paramètres principaux : la taille m de l’échantillon, le nombre C de catégories et la valeur gamma du paramètre de marge. Nous caractérisons cette dépendance en fonction du choix de la fonction de perte.
Identification et caractérisation de l'isotropie des champs aléatoires déformés via leurs ensembles d'excursion
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 19 October 2017 10:45-11:45 Lieu : Oratrice ou orateur : Julie Fournier Résumé :Une application déterministe $theta$ de $R^2$ dans lui-même déforme le plan de façon bijective et régulière. Avec un champ aléatoire $X$ réel et défini sur $R^2$, régulier, stationnaire et isotrope, elle entre dans la construction d’un champ déformé défini comme la composée de $X$ avec $theta$. Un champ déformé est en général anisotrope, cependant certaines applications $theta$, dont on propose une caractérisation explicite, préservent l’isotropie. En supposant en outre que $X$ est gaussien, on définit une forme faible d’isotropie d’un champ déformé par une condition d’invariance de la caractéristique d’Euler moyenne de certains de ses ensembles d’excursion. On prouve que les champs déformés satisfaisant cette définition sont en réalité isotropes en loi. Dans une dernière partie de l’exposé, en supposant connue la caractéristique d’Euler moyenne de certains ensembles d’excursion d’un champ déformé, on prouve qu’il est possible d’identifier la déformation $theta$ associée.
Time series and long memory
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 28 September 2017 10:45-11:45 Lieu : Oratrice ou orateur : Marianne Clausel Résumé :Sur des équations aux dérivées partielles à coefficients constants par morceaux
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 14 September 2017 10:45-11:45 Lieu : Oratrice ou orateur : Zili Mounir Résumé :On présente la solution fondamentale d’une équation aux dérivées partielles à coefficient constants par morceaux. De telles équations apparaissent, entre autres, lors de la modélisation de la diffusion de particules dans des milieux hétérogènes. Partant d’une représentation probabiliste de la solution, on explicite un développement asymptotique en temps petits, utilisable dans les applications concrètes.
Fonctionnelles de coà»t sur des arbres aléatoires
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 15 June 2017 10:45-11:45 Lieu : Oratrice ou orateur : Marion Sciauveau Résumé :Les arbres apparaissent naturellement dans de nombreux domaines tels que l’informatique pour le stockage de données ou encore la biologie pour classer des espèces dans des arbres phylogénétiques.
Dans cet exposé, nous nous intéresserons aux limites de fonctionnelles additives de grands arbres aléatoires. Nous étudierons les cas des arbres binaires sous le modèle de Catalan (arbres aléatoires choisis uniformément parmi les arbres binaires enracinés complets ordonnés avec un nombre de nÅ“ud donné) et les arbres simplement générés. On obtiendra un principe d’invariance pour ces fonctionnelles ainsi que les fluctuations associées.
Dans le cas binaire, la preuve repose sur le lien entre les arbres binaires et l’excursion brownienne normalisée (voir Aldous [1]). Cela nous permettra de retrouver les résultats avancés par Fill et Kapur [2] et Fill et Janson [3].
Références :
[1] : D. Aldous. The continuum random tree. III. (1993)
[2] : J.A. Fill and N.Kapur. Limiting distributions for additive functionals on Catalan trees (2004)
[3] : J.A. Fill and S. Janson. Precise logarithmics for the right tails of some limit random variables for random trees (2009)
Concentration inequalities for regenerative and Harris recurrent Markov chains with applications to statistical learning
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 18 May 2017 10:45-11:45 Lieu : Oratrice ou orateur : Gabriela Ciolek Résumé :Concentration inequalities are very often a crucial step in deriving many results in statistical learning. The purpose of this talk is to present Bernstein and Hoeffding type maximal inequalities for regenerative Markov chains. Furthermore, we generalize these results and show exponential bounds for suprema of empirical processes over a class of functions F which size is controlled by its uniform entropy number. We show also that concentration inequalities are possible to obtain when the chain is sub-geometric. All constants involved in the bounds of the considered inequalities are given in an explicit form which can be advantageous in practical considerations. We show that the inequalities obtained for regenerative Markov chains can be easily generalized to a Harris recurrent case. Finally we provide one example of application of presented inequalities in statistical learning theory and obtain generalization bounds for mimimum volume set estimation problem when the data are Markovian.