Upcoming presentations
Viscosity solutions for systems of variational inequalities with nonlinear boundary conditions on bounded domains
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 3 April 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Yves Ngounou Bakam (ENSAI) Résumé :Copulas, introduced in the 1950’s and rediscovered in recent years, are powerful tools for modeling dependence structures between multidimensional variables. These tools are particularly valuable in fields like finance, insurance, economics, and biol- ogy, where understanding the relationships between variables is critical. Despite their generality, copulas can present significant challenges, particularly when estimating dependence structures in complex datasets, especially when dealing with data from different sources, scales, and shapes.
This work addresses three core challenges in copula modeling: estimation, testing, and clustering. We first propose a nonparametric copula density estimator based on Legendre orthogonal polynomials. A nonparametric copula estimator is then deduced by integration. Both estimates are based on a set of moments that define the copulas, and we’ll call them the copula coefficients. Flexible modeling is possible even when copula densities may not exist due to the complete characterization of these coeffi- cients. A data-driven method is introduced to select the optimal number of copula coefficients to use, and extensive simulations show the superior performance of our approach compared to existing methods.
Next, we propose a smooth test for comparing K ≥ 2, copulas simultaneously, based on differences in their copula coefficients. The procedure involves a two-step data-driven procedure. In the first step, the most significantly different coefficients are selected for all pairs of populations and the subsequent step utilizes these coefficients to identify populations that exhibit significant differences.
Finally, we use this test to develop a clustering method that automatically identifies populations with similar dependence structures. They approaches, implemented in the Kcop R package, are demonstrated through numerical studies and real-world applica- tions. This approach can be extended to the independent clustering in high dimension where work is ongoing.
This is joint work with Denys Pommeret.
Ed Cohen
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 24 April 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ed Cohen (Imperial College, London)) Résumé :Bruno Ebner
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 15 May 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Bruno Ebner (Karlsruher Institut für Technologie) Résumé :Colloquinte de l'équipe de Probabilités et Statisitiques
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 19 June 2025 09:00-12:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : TBA Résumé :Jacek Wesolowski
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 26 June 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Jacek Wesolowski (Warsaw University of technology) Résumé :Past presentations
Sur la contrainte des solutions d'équations différentielles dirigées par le mouvement brownien fractionnaire.
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 1 February 2018 10:45-11:45 Lieu : Oratrice ou orateur : Nicolas Marie Résumé :Dans le contexte du calcul d’Itô, il existe plusieurs façons de contraindre la solution d’une équations différentielle dirigée par le mouvement brownien à rester dans un convexe fermé de l’espace : problème de réflexion de Skorokhod, condition d’invariance, singularités du champs de vecteurs avec force de rappel etc. Le but de cet exposé est de présenter des extensions de ces méthodes aux équations différentielles dirigées par le mouvement brownien fractionnaire, dans le contexte de la théorie des trajectoires rugueuses.
Reconstruction probabiliste de généalogies dans les populations végétales polyploïdes
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 25 January 2018 10:45-11:45 Lieu : Oratrice ou orateur : Frédéric Proia Résumé :On proposera dans cet exposé une approche probabiliste de reconstruction de généalogies dans les populations végétales polyploïdes (o๠les chromosomes ne vont pas nécessairement par paires). On présentera dans un premier temps une reconstruction dans une population de genêts diploïdes pour lesquels on dispose de la présence/absence de certains allèles spécifiques : la loi de probabilité du modèle s’appuie sur l’équilibre de Hardy-Weinberg. Dans un second temps, on généralisera cela à une population de rosiers polyploïdes, dont le niveau de ploïdie varie de 2x à 6x (avec une majorité de 4x). Dans un tel modèle, les lois de reproduction sont soumises à des règles combinatoires et à la problématique du dosage allélique (par exemple un hétérozygote 4x peut donner lieu à de nombreux génotypes : ‘aaab’, ‘aabb’, ‘abbb’, ‘aabc’, ‘abbc’, …, ‘abcd’). Notre modèle tient compte de ces phénomènes et propose une arborescence probabilisée des liens génétiques potentiels dans la population.
(Optimal) Best Arm Identification and application to Monte-Carlo Tree Search
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 18 January 2018 10:45-11:45 Lieu : Oratrice ou orateur : Emilie Kaufmann Résumé :In Monte-Carlo Tree Search (MCTS), the goal is to adaptively
explore paths in a game tree and perform random leaves evaluation, in
order to quickly discover the best action to take at the root. In this
talk, I will introduce a simple model for MCTS, that can be viewed as a
structured best arm identification problem in a multi-armed bandit
model. After a review of recent advances to tackle the standard best arm
identification (BAI) problem, I will explain how any BAI algorithm can
be converted to a MCTS algorithm. I will then present empirical results
and sample complexity guarantees for two particular algorithms,
UGapE-MCTS and LUCB-MCTS.
This is joint work with Aurélien Garivier (Université de Toulouse) and
Wouter Koolen (CWI, Amsterdam)
Algorithmes stochastiques pour la statistique robuste en grande dimension
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 11 January 2018 10:45-11:45 Lieu : Oratrice ou orateur : Antoine Godichon Résumé :La médiane géométrique est souvent utilisée en statistique du fait de sa robustesse. On s’intéresse donc à des estimateurs rapides de la médiane, qui consistent en des algorithmes de gradient stochastiques moyennés. On définit aussi un nouvel indicateur de dispersion robuste, appelé Matrice de Covariance Médiane, avant d’en donner des estimateurs récursifs. Cette matrice, sous certaines hypothèses, a les mêmes sous-espaces propres que la matrice de covariance, mais est moins sensible aux données atypiques, et est donc très intéressante pour l’Analyse en Composantes Principales Robuste. Travail joint avec Hervé Cardot et Peggy Cénac (Université de Bourgogne).
Automates cellulaires probabilistes de mémoire 2
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 21 December 2017 10:45-11:45 Lieu : Oratrice ou orateur : Jérôme Casse Résumé :Ces travaux ont été effectués en collaboration avec Irène Marcovici.
Un automate cellulaire probabiliste (ACP) de mémoire 2 est un algorithme stochastique qui transforme 2 mots bi-infinis $a = eta_0 = (a_i)_{i in Z}$ et $b = eta_1 = (b_i)_{i in Z}$ en un troisième $c = eta_3 = (c_i)_{i in Z}$ de tel sorte que la loi de la lettre $c_i$ ne dépend que des lettres $(b_i,a_{i+1},b_{i+1})$. Les lettres $c_i$ sont choisies de manière synchrone et indépendante. Après avoir obtenu le mot $c$, on peut ré-appliquer l’ACP en prenant en entrée les mots $(b,c)$ et ainsi de suite. On obtient alors une suite de mots $(eta_t)_{t > 0}$ dont les lettres $(eta_t(i))$ forme ce que l’on appelle le diagramme espace-temps.
Ces ACP de mémoire 2 ont été initialement définis pour étudier le modèle à 8 sommets et nous verrons qu’ils sont également liés à d’autres modèles de la physique statistique comme, par exemple, un nouveau modèle de TASEP synchrone ou le modèle d’Eden dans le demi-plan sur le réseau triangulaire.
Dans cet exposé, nous étudierons les lois invariantes de ces ACP, l’ergodicité de ces derniers, ainsi que les propriétés d’invariance de leur diagramme espace-temps. Ce sont des problèmes insolubles dans le cas général (y compris pour les ACP à mémoire 1) et pour cela nous verrons que nous devons restreindre l’étude à des cas o๠la loi invariante est de type mesure produit ou de type Markov.
S’il nous reste un peu de temps à la fin, nous verrons comme les méthodes employées dans cet exposé permettent de déduire rapidement des propriétés sur un modèle de TASEP synchrone
généralisé.
Estimation of Functional Sparsity in Nonparametric Varying Coefficient Models for Longitudinal Data Analysis
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 14 December 2017 10:45-11:45 Lieu : Oratrice ou orateur : Juhyun Park Résumé :We study the simultaneous domain selection problem for varying coefficient models as a functional regression model for longitudinal data with many covariates. The domain selection problem in functional regression mostly appears under the functional linear regression with scalar response but there is no direct correspondence to functional response models with many covariates. We reformulate the problem as nonparametric function estimation under the notation of “functional sparsity”. Sparsity is the recurrent theme that encapsulates interpretability in the face of regression with multiple inputs, and the problem of sparse estimation is well understood in the parametric setting as variable selection. For nonparametric models, interpretability not only concerns the number of covariates involved but also the {em functional form} of the estimates, and so the sparsity consideration is much more complex. To distinguish the types of sparsity in nonparametric models, we call the former “global sparsity” and the latter “local sparsity”, which constitute functional sparsity. Most existing methods focus on directly extending the framework of parametric sparsity for linear models to nonparametric function estimation to address one or the other, but not both. We develop a penalized estimation procedure that simultaneously addresses both types of sparsity in a unified framework. We establish asymptotic properties of estimation consistency and sparsistency of the proposed method. Our method is illustrated in simulation study and real data analysis, and is shown to outperform the existing methods in identifying both local sparsity and global sparsity.
[this is a joint work with Catherine Y. Tu and Haonan Wang from Colorado State University, U.S.A.]
Convergence de la DSF vers le BW
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 7 December 2017 10:45-11:45 Lieu : Oratrice ou orateur : TRAN Viet Chi Résumé :Nous considérons, sur le plan, la DSF (Directed Spanning Forest) qui est une forêt dirigée introduite par Baccelli et Bordenave (2007). Soient un processus de Poisson homogène dans le plan et une direction privilégiée (par exemple -e_y). Nous définissons l’ancêtre de chaque atome du processus de Poisson comme étant l’atome le plus proche (pour la distance euclidienne) et d’ordonnée supérieure. Le graphe résultant est la DSF : il s’agit d’une forêt, et même presque sà»rement d’un arbre. Sous de bonnes renormalisations, nous montrons que cette forêt converge en loi vers la toile Brownienne (BW, comme Brownian Web). Dans le cas de la DSF, la difficulté majeure est que la construction, pourtant simple et naturelle, crée des dépendances géométriques très complexes : au fur et à mesure de la construction du graphe, on accumule une information sur la vacuité de certaines régions (aléatoires) du plan. Les critères de convergence existant dans la littérature s’appuient sur des estimées obtenues en général par la construction de martingales ou chaînes de Markov, constructions qui sont impossibles ici. L’obtention de ces estimées clé s’appuie sur des idées de renouvellement fondées sur la géométrie du problème.
Ceci est un travail en commun avec D. Coupier, K. Saha et A. Sarkar.
Exposé à la Journée de la Fédération Charles Hermite "Apprentissage, machine learning" au LORIA
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 30 November 2017 10:45-11:45 Lieu : Oratrice ou orateur : Gilles Blanchard Résumé :Exposé dans le cadre du Forum des jeunes mathématiciennes et mathématiciens (lieu: amphi 5, Nancy)
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 23 November 2017 10:45-11:45 Lieu : Oratrice ou orateur : Marie-Pierre Etienne Résumé :Large-scale structure of the Universe: observer's point of view
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 16 November 2017 10:45-11:45 Lieu : Oratrice ou orateur : Elmo Tempel Résumé :The cosmic web is a highly complex geometrical pattern, with galaxy clusters at the intersection of filaments and filaments at the intersection of walls. Using observational data, we can visually recognize the main components of the cosmic web: voids, filaments and (super)clusters. However, to classify the cosmic web using mathematical methods is much more complicated task, which also involves the analysis of observational selection effects. In my talk I will give a brief overview about the observed large-scale structure together with the main selection effects that should be taken into account while analyzing the data.