Upcoming presentations
Local expansion properties of paracontrolled systems
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 3 April 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Nicolas Moench (Rennes) Résumé :Advancing Copula Methods: Nonparametric Estimation, Smooth Testing, and Data-Driven Clustering
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 3 April 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Yves Ngounou Bakam (ENSAI) Résumé :Copulas, introduced in the 1950’s and rediscovered in recent years, are powerful tools for modeling dependence structures between multidimensional variables. These tools are particularly valuable in fields like finance, insurance, economics, and biol- ogy, where understanding the relationships between variables is critical. Despite their generality, copulas can present significant challenges, particularly when estimating dependence structures in complex datasets, especially when dealing with data from different sources, scales, and shapes.
This work addresses three core challenges in copula modeling: estimation, testing, and clustering. We first propose a nonparametric copula density estimator based on Legendre orthogonal polynomials. A nonparametric copula estimator is then deduced by integration. Both estimates are based on a set of moments that define the copulas, and we’ll call them the copula coefficients. Flexible modeling is possible even when copula densities may not exist due to the complete characterization of these coeffi- cients. A data-driven method is introduced to select the optimal number of copula coefficients to use, and extensive simulations show the superior performance of our approach compared to existing methods.
Next, we propose a smooth test for comparing K ≥ 2, copulas simultaneously, based on differences in their copula coefficients. The procedure involves a two-step data-driven procedure. In the first step, the most significantly different coefficients are selected for all pairs of populations and the subsequent step utilizes these coefficients to identify populations that exhibit significant differences.
Finally, we use this test to develop a clustering method that automatically identifies populations with similar dependence structures. They approaches, implemented in the Kcop R package, are demonstrated through numerical studies and real-world applica- tions. This approach can be extended to the independent clustering in high dimension where work is ongoing.
This is joint work with Denys Pommeret.
Ed Cohen
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 24 April 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ed Cohen (Imperial College, London)) Résumé :Bruno Ebner
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 15 May 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Bruno Ebner (Karlsruher Institut für Technologie) Résumé :Colloquinte de l'équipe de Probabilités et Statisitiques
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 19 June 2025 09:00-12:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : TBA Résumé :Jacek Wesolowski
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 26 June 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Jacek Wesolowski (Warsaw University of technology) Résumé :Past presentations
Uniqueness for global solutions to the semidiscrete stochastic heat equation
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 2 April 2020 10:45-11:45 Lieu : Oratrice ou orateur : Tobias Hurth Résumé :In spatial dimension > 2, we consider the uniqueness problem for global solutions to the stochastic heat equation, discrete in space and continuous in time, with a small Gaussian noise. A similar problem in the continuous-space setting has been studied by Yuri Kifer. We will describe and motivate the following result: Up to a time-dependent random normalization, the global solution is unique in the class of positive functions of subexponential growth and decay in space. The talk is based on a project with Kostya Khanin and Beatriz Navarro Lameda.
La métastabilité en physique statistique.
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 2 April 2020 09:15-11:45 Lieu : Oratrice ou orateur : Boris Nectoux Résumé :Considérons le processus de Langevin suramorti (Xt)t≥0 solution de l’équation
différentielle stochastique sur R^d
: dXt = −∇f(Xt)dt + racine(h)dBt.
C’est un processus prototypique utilisé pour modéliser l’évolution de systèmes
statistiques. La fonction f : R^d → R est le potentiel du système et h > 0 sa tem-
pérature. Le processus de Langevin suramorti est métastable: il reste bloqué (piégé) dans des voisinages des minima locaux de f sur de longues périodes de temps avant de s’en échapper. C’est une des raisons majeures qui rend inaccessi-
bles l’observation de transitions entre les états macroscopiques du système ainsi que le calcul de quantités thermodynamiques par intégration directe des tra-
jectoires de (Xt)t≥0. De nombreux algorithmes ont été introduits ces dernières années pour accélérer l’échantillonnage de dynamiques métastables (e.g. les
méthodes de Monte-Carlo cinétique et les accelerated dynamics algorithms introduits par A.F. Voter et al. à Los Alamos). Ces algorithmes reposent sur des estimées précises de l’évènement de sortie d’un état macroscopique Ω ⊂ R
d à basse température (h<<1) et notamment sur le calcul asymptotique des taux de transition entre les états macroscopiques à l'aide de la célèbre loi d'Eyring-
Kramers (1935). Dans cet exposé, je présenterai des résultats récents marquant des avancées sig-
nificatives sur l'étude précise de l'évènement de sortie d'un état macroscopique Ω pour le processus de Langevin suramorti quand h << 1, ainsi que les nom-
breuses questions qui restent ouvertes.
Estimation et validation des modèles FARIMA faibles.
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 26 March 2020 09:15-10:15 Lieu : Oratrice ou orateur : Youssef Esstafa Résumé :Dans ce travail nous considérons, le problème de l’analyse statistique des modèles FARIMA (Fractionally AutoRegressive Integrated Moving-Average) induits par un bruit blanc non corrélé mais qui peut contenir des dépendances non linéaires très générales. Ces modèles sont appelés FARIMA faibles et permettent de modéliser des processus à mémoire longue présentant des dynamiques non linéaires, de structures souvent non-identifiées, très générales. Relâcher l’hypothèse d’indépendance sur le terme d’erreur, une hypothèse habituellement imposée dans la littérature, permet aux modèles FARIMA faibles d’élargir considérablement leurs champs d’application en couvrant une large classe de processus à mémoire longue non linéaires.
Nous établissons les procédures d’estimation et de validation des modèles FARIMA faibles. Nous montrons, sous des hypothèses faibles de régularités sur le bruit, que l’estimateur des moindres carrés des paramètres des modèles FARIMA(p,d,q) faibles est fortement convergent et asymptotiquement normal. La matrice de variance asymptotique de l’estimateur des moindres carrés des modèles FARIMA(p,d,q) faibles est de la forme “sandwich”. Cette matrice peut être très différente de la variance asymptotique obtenue dans le cas fort (i.e. dans le cas o๠le bruit est supposé iid). Nous proposons, par deux méthodes différentes, un estimateur convergent de cette matrice. Une méthode alternative basée sur une approche d’auto-normalisation est également proposée pour construire des intervalles de confiance des paramètres des modèles FARIMA(p,d,q) faibles. Cette technique nous permet de contourner le problème de l’estimation de la matrice de variance asymptotique de l’estimateur des moindres carrés.
Nous accordons ensuite une attention particulière au problème de la validation des modèles FARIMA(p,d,q) faibles. Nous montrons que les autocorrélations résiduelles ont une distribution asymptotique normale de matrice de covariance différente de celle obtenue dans le cadre des FARIMA forts. Cela nous permet de déduire la loi asymptotique exacte des statistiques portmanteau et de proposer ainsi des versions modifiées des tests portmanteau standards de Box-Pierce et Ljung-Box. Il est connu que la distribution asymptotique des tests portmanteau est correctement approximée par un khi-deux lorsque le terme d’erreur est supposé iid. Dans le cas général, nous montrons que cette distribution asymptotique est celle d’une somme pondérée de khi-deux. Elle peut être très différente de l’approximation khi-deux usuelle du cas fort. Nous adoptons la même approche d’auto-normalisation utilisée pour la construction des intervalles de confiance des paramètres des modèles FARIMA faibles pour tester l’adéquation des modèles FARIMA(p,d,q) faibles. Cette méthode a l’avantage de contourner le problème de l’estimation de la matrice de variance asymptotique du vecteur joint de l’estimateur des moindres carrés et des autocovariances empiriques du bruit.
Processus empirique basé sur des U-statistiques à deux échantillons
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 19 March 2020 10:45-11:45 Lieu : Oratrice ou orateur : Davide Giraudo Résumé :Après avoir introduit les U-statistiques à deux échantillons,
nous présenterons
une version empirique de ces-dernières. Ceci permet de détecter un
potentiel changement de loi
dans un échantillon. Nous allons donner des conditions suffisantes pour
la convergence
des U-statistiques à deux échantillons dans un espace fonctionnel
approprié ainsi qu’une description du processus limite.
Il s’agit d’un travail réalisé en collaboration avec Herold Dehling
(Ruhr-Universität Bochum) et Olimjon Sharipov (National University of
Uzbekistan)
Diagramme de phase pour le area-interaction model
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 12 March 2020 10:45-11:45 Lieu : Oratrice ou orateur : Pierre Houdebert Résumé :Une mesure de Gibbs est une mesure de probabilité, sur l’espace des configurations, qui est définie en prescrivant ses lois conditionnelles. Ces lois conditionnelles admettent une densité, par rapport au processus ponctuel de Poisson homogène d’intensité z, de la forme exp ( – beta H ) avec H l’énergie de la configuration. Dans ce cadre une question naturelle est de savoir, pour chaque z et beta, s’il existe une ou plusieurs mesures ayant ces lois conditionnelles.
Dans un article récent en collaboration avec D. Dereudre (Lille) nous étudions le area-interaction model. Pour ce modèle il est conjecturé que la non-unicité a lieu si et seulement si z = beta grand.
Nous répondons partiellement à cette conjecture en prouvant l’unicité ou la non-unicité pour tous les paramètres z, beta en dehors d’un compact.
Les outils utilisés sont, entre autre, de la percolation et une représentation FK du modèle.
Percolation de dernier passage généralisée : étude sur le cylindre
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 5 March 2020 10:45-11:45 Lieu : Oratrice ou orateur : Jérôme Casse Résumé :La percolation de dernier passage dirigée est, classiquement, un modèle de croissance dans le quart de plan discret. Pour croitre de la case $(i,j)$, il faut que les cases $(i-1,j)$ et $(i,j-1)$ soient présentes dans notre amas de croissance, puis attendre un temps aléatoire $tau_{(i,j)}$. Ce modèle est notemment intéressant pour modéliser le temps d’asséchement d’un terrain.
Dans cet exposé, je présente une généralisation de la percolation de dernier passage dirigée dans le cas o๠le temps à attendre $tau_{(i,j)}$ dépend des temps d’arrivée des cases $(i-1,j)$ et $(i,j-1)$ dans l’amas et je présente ce modèle non pas comme un modèle de croissance dans le quart de plan, mais dans un cylindre de taille $L$. Dans le cylindre, il apparait ainsi une ligne de front pour notre amas.
L’objet de cet exposé va être d’étudier deux propriétés asymptotiques (en temps) de cette ligne de front: sa vitesse et sa forme. Nous verrons que, dans des cas particuliers dits solubles ou intégrables, cette vitesse et cette forme ont une forme explicite en fonction des paramètres du modèle. Puis, j’expliquerai par quelle magie ces cas sont solubles, alors que les autres ne les sont a priori pas.
Projection de processus ponctuels déterminantaux et applications aux méthodes Monte-Carlo
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 27 February 2020 10:45-11:45 Lieu : Oratrice ou orateur : Adrien Mazoyer Résumé :Dans ces travaux effectués en collaboration avec J.-F. Coeurjolly (UQAM, Montréal) et P.-O. Amblard (Gipsa-Lab, Grenoble), nous proposons d’estimer une intégrale à partir de points de quadrature produits par un processus ponctuel déterminantal (DPPs), construits à partir de noyaux de type Dirichlet. Sous l’hypothèse que l’intégrande appartient à un certain espace de Sobolev de régularité s>1/2 (condition vérifiée par de nombreuses fonctions non-continument différentiable), l’estimateur ainsi construit satisfait alors un théorème central limite avec une variance explicite et une vitesse de convergence hyperuniforme. Grâce à la structure de ces DPPs, il est également possible d’utiliser une même configuration de points et, via la projection de ces points, estimer des intégrales de fonctions définies sur des espaces de dimension inférieure, tout en conservant les résultats asymptotiques obtenus précédemment.
Nearest-neighbour Markov point processes on graphs with Euclidean edge
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 13 February 2020 10:45-11:45 Lieu : Oratrice ou orateur : Marie-Colette van Lieshout Résumé :Stabilité du théorème de Bakry-Emery
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 6 February 2020 10:45-11:45 Lieu : Oratrice ou orateur : Max Fathi Résumé :Le theoreme de Bakry-Emery indique que, sous une condition d’uniforme
convexité du potentiel, certaines mesures de probabilités vérifient une
inégalité de Poincaré, avec une constante meilleure que celle associée à
la mesure gaussienne. De manière équivalente, ce résultat s’interprète
comme une borne sur les valeurs propres de certains opérateurs de
diffusion. Dans cet exposé, je présenterai un résultat de stabilité : si
une telle mesure a une constante de Poincaré proche de celle de la
gaussienne, alors elle contient presque un facteur gaussien, avec des
bornes d’erreur explicites. La preuve repose sur une combinaison
d’arguments élémentaires de calcul des variations, et de la méthode de
Stein sur l’estimation de distances entre mesures de probabilités. Comme
application, on obtient des formes inverses de certaines inégalités de
concentration pour les mesures uniformément log-concaves. Travail en
collaboration avec Thomas Courtade.
Universalité dans les modèles avec contraintes cinétiques : le rôle des barrières d'énergie
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 30 January 2020 10:45-11:45 Lieu : Oratrice ou orateur : Laure Marêché Résumé :Les modèles avec contraintes cinétiques constituent une classe de
modèles de mécanique statistique qui ont été introduits par les
physiciens pour décrire le comportement du verre. Il s’agit de modèles
de configurations sur des graphes dans lesquels chaque sommet du graphe
est soit à l’état 0, soit à l’état 1, et ne peut changer d’état que si
une contrainte de la forme « il y a assez de zéros dans le voisinage du
sommet » est satisfaite. Il existe une infinité de contraintes
possibles, et les propriétés d’un modèle dépendent fortement du choix de
sa contrainte. Une question très importante est donc celle de
l’universalité : peut-on répartir cette infinité de modèles en un nombre
fini de classes selon leur comportement ? Cette question a récemment été
résolue lorsque le graphe de base est Z2 pour une classe de modèles plus
simple, la percolation bootstrap, que l’on peut considérer comme une
version déterministe et monotone des modèles avec contraintes
cinétiques. Cependant, les modèles avec contraintes cinétiques
présentent un phénomène de barrière d’énergie qui peut rendre leur
comportement très différent de celui de la percolation bootstrap, et
nécessitent donc une classification d’universalité plus fine. Dans cet
exposé, on présentera une telle classification d’universalité pour les
modèles avec contraintes cinétiques.