Upcoming presentations
Workshop "Singular SPDEs, invariant measures and discrete models"
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 4 December 2024 - 6 December 2024 00:00-23:59 Lieu : Salle de conférences Nancy Oratrice ou orateur : Organisé par Yvain Bruned Résumé :Planning, titres et résumés ici.
Perfect simulation of the invariant laws of Markovian load-balancing queueing networks
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 12 December 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Carl Graham (Polytechnique) Résumé :We define a wide class of Markovian load balancing queueing networks, including classic networks studied in the lively literature on the subject. Each network has identical single-server infinite-buffer queues and implements a load balancing policy to allocate each task at its arrival and possibly reallocate it at service completions. The purpose of the policy is to optimize server utilization under constraints such as limited information, real-time decision taking, and network topology. The queue length process is not necessarily exchangeable. The invariant law is in general not known even up to normalizing constant. We provide perfect simulation methods in view of Monte Carlo estimation of quantities of interest in equilibrium, for instance for performance evaluation. In this infinite multi-dimensional state space, we use an unusual preorder defining an order up to permutation of the coordinates, define a coupling in which networks in this class are dominated by the network with uniform routing, and implement dominated coupling from the past methods.
[The talk will be in French, but slides will be in English.]
Lucas Teyssier
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 19 December 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lucas Teyssier (Vancouver) Résumé :David Dereudre
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 9 January 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : David Dereudre (Université de Lille) Résumé :Carlo Bellingeri
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 16 January 2025 10:45-11:45 Lieu : Salle de séminaires Metz Oratrice ou orateur : Carlo Bellingeri (IECL) Résumé :(Exceptionnellement, le séminaire aura lieu à Metz et sera diffusé en visio en salle de conférence à Nancy.)
Thibault Lemoine
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 23 January 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Thibault Lemoine (Collège de France) Résumé :Benoît Nieto
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 6 February 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Benoît Nieto (École Polytechnique) Résumé :Ed Cohen
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 24 April 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ed Cohen (Imperial College, London)) Résumé :Bruno Ebner
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 15 May 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Bruno Ebner (Karlsruher Institut für Technologie) Résumé :Past presentations
Percolation arithmétique
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 22 March 2018 10:45-11:45 Lieu : Oratrice ou orateur : Sébastien Martineau Résumé :Si on part du réseau carré et efface chaque sommet indépendamment avec une certaine probabilité q, on effectue ce qui s’appelle une percolation de Bernoulli : cet important modèle de mécanique statistique rend compte des phénomènes d’infiltration en milieu poreux. Si on part du réseau carré mais cette fois-ci efface chaque sommet $(x,y)$ tel que $PGCD(x,y)neq 1$, on obtient maintenant un objet déterministe de nature arithmétique. Est-il possible de former une percolation (véritablement aléatoire donc) riche en informations arithmétiques ?
On va voir que cela est effectivement possible : on peut définir à quoi ressemble le sous-graphe arithmétique précédent “vu depuis un point tiré uniformément dans le plan”. Ce sous-graphe aléatoire est obtenu selon un “crible d’Ératosthène aléatoire”. On fournira de ce graphe aléatoire une définition élémentaire, puis utilisera le lemme chinois pour faire le pont entre le sous-graphe arithmétique déterministe et sa contrepartie aléatoire. On abordera ensuite brièvement quelques problèmes naturels, comme l’étude des composantes connexes infinies du graphe aléatoire.
Mean-field games with branching
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 22 February 2018 10:45-11:45 Lieu : Oratrice ou orateur : Xiaolu Tan Résumé :The mean-field game (MFG) consists in a differential game of a very large population on a finite or infinite time horizon. In this work, we study the mean-field games with branching, which allows to model the immigration, default and reproduction behaviour in the population. We show how the branching feature would change the formulation of the problem and then provide a general existence result of this new MFG. This is a joint work with Julien Claisse and Zhenjie Ren
Variational Inference in the Poisson lognormal model for multivariate analysis in ecology
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 15 February 2018 10:45-11:45 Lieu : Oratrice ou orateur : Julien Chiquet Résumé :Many application domains such as ecology or genomics have to deal with multivariate count data. A typical example is the joint observation of the respective abundances of a set of species in a series of sites, aiming to understand the co-variations between these species. The Gaussian setting provides a canonical way to model such dependencies, but does not apply in general. We adopt here the Poisson lognormal (PLN) model, which is attractive since it allows one to describe multivariate count data with a Poisson distribution as the emission law, while all the dependencies is kept in an hidden friendly multivariate Gaussian layer. While usual maximum likelihood based inference raises some issues in PLN, we show how to circumvent this issue by means of a variational algorithm for which gradient descent easily applies. We then derive several variants of our algorithm to apply PLN to PCA, LDA and sparse covariance inference on multivariate count data. We illustrate our method on microbial ecology datasets, and show the importance of accounting for covariate effects to better understand interactions between species.
Economic and financial problematic in discrete-time models with multiple and non-dominated priors
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 8 February 2018 10:45-11:45 Lieu : Oratrice ou orateur : Laurence Carassus Résumé :We will present some financial and economic problematics arising in discrete-time financial/economic models with a finite time horizon under non-dominated model uncertainty. This means that there exists a set of probability measures representing the agent beliefs and that this set is not dominated by a reference measure.
The technics are based on dynamic programming and measurable selection. We also use analytic sets which display the nice property of being stable by projection or countable unions and intersections but fail to be stable by complementation.
Sur la contrainte des solutions d'équations différentielles dirigées par le mouvement brownien fractionnaire.
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 1 February 2018 10:45-11:45 Lieu : Oratrice ou orateur : Nicolas Marie Résumé :Dans le contexte du calcul d’Itô, il existe plusieurs façons de contraindre la solution d’une équations différentielle dirigée par le mouvement brownien à rester dans un convexe fermé de l’espace : problème de réflexion de Skorokhod, condition d’invariance, singularités du champs de vecteurs avec force de rappel etc. Le but de cet exposé est de présenter des extensions de ces méthodes aux équations différentielles dirigées par le mouvement brownien fractionnaire, dans le contexte de la théorie des trajectoires rugueuses.
Reconstruction probabiliste de généalogies dans les populations végétales polyploïdes
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 25 January 2018 10:45-11:45 Lieu : Oratrice ou orateur : Frédéric Proia Résumé :On proposera dans cet exposé une approche probabiliste de reconstruction de généalogies dans les populations végétales polyploïdes (o๠les chromosomes ne vont pas nécessairement par paires). On présentera dans un premier temps une reconstruction dans une population de genêts diploïdes pour lesquels on dispose de la présence/absence de certains allèles spécifiques : la loi de probabilité du modèle s’appuie sur l’équilibre de Hardy-Weinberg. Dans un second temps, on généralisera cela à une population de rosiers polyploïdes, dont le niveau de ploïdie varie de 2x à 6x (avec une majorité de 4x). Dans un tel modèle, les lois de reproduction sont soumises à des règles combinatoires et à la problématique du dosage allélique (par exemple un hétérozygote 4x peut donner lieu à de nombreux génotypes : ‘aaab’, ‘aabb’, ‘abbb’, ‘aabc’, ‘abbc’, …, ‘abcd’). Notre modèle tient compte de ces phénomènes et propose une arborescence probabilisée des liens génétiques potentiels dans la population.
(Optimal) Best Arm Identification and application to Monte-Carlo Tree Search
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 18 January 2018 10:45-11:45 Lieu : Oratrice ou orateur : Emilie Kaufmann Résumé :In Monte-Carlo Tree Search (MCTS), the goal is to adaptively
explore paths in a game tree and perform random leaves evaluation, in
order to quickly discover the best action to take at the root. In this
talk, I will introduce a simple model for MCTS, that can be viewed as a
structured best arm identification problem in a multi-armed bandit
model. After a review of recent advances to tackle the standard best arm
identification (BAI) problem, I will explain how any BAI algorithm can
be converted to a MCTS algorithm. I will then present empirical results
and sample complexity guarantees for two particular algorithms,
UGapE-MCTS and LUCB-MCTS.
This is joint work with Aurélien Garivier (Université de Toulouse) and
Wouter Koolen (CWI, Amsterdam)
Algorithmes stochastiques pour la statistique robuste en grande dimension
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 11 January 2018 10:45-11:45 Lieu : Oratrice ou orateur : Antoine Godichon Résumé :La médiane géométrique est souvent utilisée en statistique du fait de sa robustesse. On s’intéresse donc à des estimateurs rapides de la médiane, qui consistent en des algorithmes de gradient stochastiques moyennés. On définit aussi un nouvel indicateur de dispersion robuste, appelé Matrice de Covariance Médiane, avant d’en donner des estimateurs récursifs. Cette matrice, sous certaines hypothèses, a les mêmes sous-espaces propres que la matrice de covariance, mais est moins sensible aux données atypiques, et est donc très intéressante pour l’Analyse en Composantes Principales Robuste. Travail joint avec Hervé Cardot et Peggy Cénac (Université de Bourgogne).
Automates cellulaires probabilistes de mémoire 2
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 21 December 2017 10:45-11:45 Lieu : Oratrice ou orateur : Jérôme Casse Résumé :Ces travaux ont été effectués en collaboration avec Irène Marcovici.
Un automate cellulaire probabiliste (ACP) de mémoire 2 est un algorithme stochastique qui transforme 2 mots bi-infinis $a = eta_0 = (a_i)_{i in Z}$ et $b = eta_1 = (b_i)_{i in Z}$ en un troisième $c = eta_3 = (c_i)_{i in Z}$ de tel sorte que la loi de la lettre $c_i$ ne dépend que des lettres $(b_i,a_{i+1},b_{i+1})$. Les lettres $c_i$ sont choisies de manière synchrone et indépendante. Après avoir obtenu le mot $c$, on peut ré-appliquer l’ACP en prenant en entrée les mots $(b,c)$ et ainsi de suite. On obtient alors une suite de mots $(eta_t)_{t > 0}$ dont les lettres $(eta_t(i))$ forme ce que l’on appelle le diagramme espace-temps.
Ces ACP de mémoire 2 ont été initialement définis pour étudier le modèle à 8 sommets et nous verrons qu’ils sont également liés à d’autres modèles de la physique statistique comme, par exemple, un nouveau modèle de TASEP synchrone ou le modèle d’Eden dans le demi-plan sur le réseau triangulaire.
Dans cet exposé, nous étudierons les lois invariantes de ces ACP, l’ergodicité de ces derniers, ainsi que les propriétés d’invariance de leur diagramme espace-temps. Ce sont des problèmes insolubles dans le cas général (y compris pour les ACP à mémoire 1) et pour cela nous verrons que nous devons restreindre l’étude à des cas o๠la loi invariante est de type mesure produit ou de type Markov.
S’il nous reste un peu de temps à la fin, nous verrons comme les méthodes employées dans cet exposé permettent de déduire rapidement des propriétés sur un modèle de TASEP synchrone
généralisé.
Estimation of Functional Sparsity in Nonparametric Varying Coefficient Models for Longitudinal Data Analysis
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 14 December 2017 10:45-11:45 Lieu : Oratrice ou orateur : Juhyun Park Résumé :We study the simultaneous domain selection problem for varying coefficient models as a functional regression model for longitudinal data with many covariates. The domain selection problem in functional regression mostly appears under the functional linear regression with scalar response but there is no direct correspondence to functional response models with many covariates. We reformulate the problem as nonparametric function estimation under the notation of “functional sparsity”. Sparsity is the recurrent theme that encapsulates interpretability in the face of regression with multiple inputs, and the problem of sparse estimation is well understood in the parametric setting as variable selection. For nonparametric models, interpretability not only concerns the number of covariates involved but also the {em functional form} of the estimates, and so the sparsity consideration is much more complex. To distinguish the types of sparsity in nonparametric models, we call the former “global sparsity” and the latter “local sparsity”, which constitute functional sparsity. Most existing methods focus on directly extending the framework of parametric sparsity for linear models to nonparametric function estimation to address one or the other, but not both. We develop a penalized estimation procedure that simultaneously addresses both types of sparsity in a unified framework. We establish asymptotic properties of estimation consistency and sparsistency of the proposed method. Our method is illustrated in simulation study and real data analysis, and is shown to outperform the existing methods in identifying both local sparsity and global sparsity.
[this is a joint work with Catherine Y. Tu and Haonan Wang from Colorado State University, U.S.A.]