Complex geometry seminar

Upcoming presentations

The BNS sets of fundamental groups of complex algebraic varieties

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 25 November 2024 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Vasily Rogov Résumé :

The BNS set of a finitely generated group $\Gamma$ is a certain canonical subset of the space of real additive characters on $\Gamma$. It is a subtle invariant of the group that naturally comes up in different questions of geometric and homological group theory. In the case when $\Gamma$ is the fundamental group of a compact Kähler manifold $X$, Thomas Delzant found a beautiful description of its BNS set in terms of holomorphic fibrations of $X$ over hyperbolic orbifold curves. Using it, he showed that if the fundamental group of a compact Kähler manifold is virtually solvable, it is in fact virtually nilpotent. I will explain the main ideas behind Delzant’s proof and how to generalise his theorems to the case when $X$ is a smooth complex quasi-projective variety. Time permitting, I will also discuss some applications and the case of quasi-Kähler manifolds.


Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 December 2024 14:00-16:00 Lieu : Oratrice ou orateur : Jean-René Chazottes Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 6 January 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 3 February 2025 14:00-16:00 Lieu : Oratrice ou orateur : Stefan Kebekus Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 3 March 2025 14:00-16:00 Lieu : Oratrice ou orateur : Hsueh-Yung Lin Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 28 April 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 5 May 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 June 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Abonnement iCal

Past presentations

Géométrie birationnelle sur certaines variétés algébriques munies de l'action d'un groupe algébrique réductif

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 25 April 2016 14:00-16:30 Lieu : Oratrice ou orateur : Boris Pasquier Résumé :

Après une introduction intuitive de la géométrie birationnelle, j’expliquerai comment celle-ci peut devenir plus simple sur des variétés munies de l’action d’un groupe réductif. Je définirai ensuite les grandes lignes du programme des modèles minimaux, et je détaillerai comment décrire et faire tourner ce programme dans le cadre de familles “bien choisies” de variétés munies de l’action d’un groupe réductif, à  l’aide des représentations du groupe.


Sous-groupes algébriques connexes maximaux du groupe de Cremona

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 18 April 2016 15:30-16:30 Lieu : Oratrice ou orateur : Ronan Terpereau Résumé :

Cet exposé est à  propos d’un travail en cours avec Jérémy Blanc (Bâle) et Andrea Fanelli (Bâle). Le groupe de Cremona est le groupe des transformations birationnelles de l’espace projectif complexe de dimension n. Ce groupe n’est pas algébrique dès lors que n>1, mais on peut espérer (au moins lorsque n est petit) classifier ses sous-groupes connexes algébriques maximaux.

En dimension 2, la classification est ancienne et bien connue (F. Enriques, 1893). En dimension 3, la première étude rigoureuse fà»t effectuée par H. Umemura dans les années 1980 dans une série de cinq papiers (plutôt longs et techniques).

Dans cet exposé, j’expliquerai comment on peut espérer redémontrer les résultats d’Umemura d’une façon beaucoup plus simple et géométrique à  l’aide (d’un usage élémentaire) de la théorie de Mori. Je terminerai en discutant plusieurs généralisations possibles des résultats d’Umemura via cette nouvelle approche.


Positivité et dualité sur les variétés complexes compactes lisses

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 14 March 2016 15:30-16:00 Lieu : Oratrice ou orateur : Dan Popovici Résumé :

Nous présenterons notre solution à  la partie qualitative et notre solution partielle à  la partie quantitative de la conjecture de Demailly des inégalités de Morse transcendantes pour une différence de deux classes nef sur une variété kählérienne compacte. En plus d’estimations des solutions de certaines équations de Monge-Ampère, la méthode utilise la dualité entre la cohomologie de Bott-Chern et celle d’Aeppli de bidegré complémentaire, ainsi que la dualité entre le cône pseudoeffectif des classes de Bott-Chern de $(1, 1)$-courants positifs fermés introduit par Demailly et le cône de Gauduchon des classes d’Aeppli de bidegré $(n-1, n-1)$ de métriques de Gauduchon que nous avons introduit.


Caractérisation numérique des quadriques

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 7 March 2016 15:30-16:00 Lieu : Oratrice ou orateur : Thomas Dedieu Résumé :

Je présenterai le résultat suivant obtenu en collaboration avec
Andreas Höring : soit $X$ une variété de Fano, lisse et telle que
$-K_X cdot C geq dim X$ pour toute courbe rationnelle $C subset
X$. Alors $X$ est un espace projectif ou une hypersurface
quadrique.


Plongement de variétés presque complexes compactes dans une variété algébrique complexe

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 29 February 2016 15:30-16:00 Lieu : Oratrice ou orateur : Hervé Gaussier Résumé :

Dans ce travail en commun avec Jean-Pierre Demailly, nous montrons que toute variété presque complexe compacte lisse peut être plongée dans une variété algébrique complexe, transversalement à  une distribution algébrique.


Croissances et suites de degrés

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 22 February 2016 15:30-16:00 Lieu : Oratrice ou orateur : Julie Déserti Résumé :

Dans cet exposé je m’intéresserai aux croissances et suites de degrés des automorphismes polynomiaux de $mathbb{C}^n$ et des transformations birationnelles de $mathbb{P}^n_{mathbb{C}}$.


Actions des groupes de Schottky sur les variétés rationnelles homogènes

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 8 February 2016 15:30-16:30 Lieu : Oratrice ou orateur : Christian Miebach Résumé :

En 1877 Schottky a construit des actions libres et propres du
groupe libre de rang $r$ sur un domaine de la sphère de Riemann qui ont pour quotient une surface de Riemann compacte de genre $r$.
En 1984 Nori a généralisé cette construction à  tout espace projectif complexe de dimension impaire dans le but d’obtenir des variétés complexes compactes dont le groupe fondamental est libre. Là¡russon ainsi que Seade et Verjovsky ont étudié des propriétés analytiques et géométriques de ces variétés quotients, comme leur dimensions algébrique
et de Kodaira, et leurs déformations. Je parlerai d’un travail récent avec Karl Oeljeklaus (Aix-Marseille Université) o๠nous avons considéré la question aux quelles variétés rationnelles homogènes on peut généraliser la construction de Nori. De plus, j’expliquerai les résultats que nous avons obtenus sur la géométrie des nouveaux exemples de variétés quotients.


Progrès récents dans l'étude des sous-variétés coisotropes des variétés holomorphes symplectiques

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 1 February 2016 15:30-16:30 Lieu : Oratrice ou orateur : Gianluca Pacienza Résumé :

Claire Voisin a récemment proposé une nouvelle approche pour l’étude du groupe de Chow des 0-cycles sur les variétés holomorphes symplectiques. Les objets clé dans cette approche sont les sous-variétés coisotropes de telles variétés. Dans l’exposé je présenterai des résultats portant sur l’existence et la théorie des déformations de sous-variétés coisotropes des variétés holomorphes symplectiques, obtenus dans une séries de travaux en collaboration avec F. Charles, Ch. Lehn et G. Mongardi.


Conjecture de la négativité bornée et constantes de Harbourne des surfaces abéliennes

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 25 January 2016 15:30-16:00 Lieu : Oratrice ou orateur : Xavier Roulleau Résumé :

La conjecture de la négativité bornée a été formulée par l’école italienne dès le début de la théorie des surfaces algébriques. Elle prévoit que pour une surface projective complexe lisse X, il existe une constante b telle que pour toute courbe C (réduite) sur X l’auto-intersection de C vérifie C^2 >b.
Même si on sait que cette conjecture est vérifiée par une surface donnée (par exemple le plan), on ne sait en général rien dire pour un éclatement (multiple) de cette surface. Les constantes de Harbourne ont été récemment introduites pour aborder cette question.
Dans cette exposé nous ferons le point sur les connaissances actuelles et présenterons nos résultats sur les surfaces abéliennes contenant des courbes elliptiques.


Endomorphismes permutables de $mathbb P^2$

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 11 January 2016 14:00-15:00 Lieu : Oratrice ou orateur : Lucas Kaufmann Résumé :

On considère le problème de décrire les pairs d’endomorphismes holomorphes permutables (c.a.d. qui commutent) de l’espace projective complexe. Le cas de dimension $1$ est classique et a été classifié par Fatou, Julia et Ritt sous la condition

$f^n neq g^m$ pour tout $n,m geq 1.$ (1)

En dimension quelconque un théorème de Dinh et Sibony montre que, si $f$ et $g$ sont des endomorphismes permutables de $mathbb P^k$ et leurs degrés satisfont $d_f^n neq d_g^m$ pour tout $n,m geq 1$ alors $f$ et $g$ sont induits par des applications affines de $mathbb C^k$ après un quotient par un groupe discret de transformations affines. Leur conclusion n’est plus vraie si on remplace la condition sur les degrés par la condition plus faible $f^n neq g^m$ pour tout $n,m geq 1$. Un contre exemple existe en dimension $k geq 3$.

Le but de cet exposé est de présenter une description des endomorphismes permutables du plan projectif sous la condition plus faible (1), ce qui complète la classification en dimension 2.


19 20 21 22 23 24 25 26 27 28 29