Upcoming presentations
Divisorial elementary Mori contractions of maximal length
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 24 February 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Bruno Dewer Résumé :An elementary Mori contraction from a smooth variety $X$ is a morphism with connected fibres onto a normal variety which contracts a single extremal ray of $K_X$-negative curves. Thanks to a result by P. Ionescu and J. Wisniewsi, we know that the length of such a contraction (i.e. the minimal degree $-K_X$ can have on contracted rational curves) is bounded from above. In a paper which dates back to 2013, A. Höring and C. Novelli studied elementary Mori contractions of maximal length, that is, elementary Mori contractions for which the upper bound is met. Their main result exhibits the structure of a projective bundle for the locus of positive-dimensional fibres up to a birational modification. In my talk, I will move to the submaximal case, in other words the case where the length equals its upper bound minus one, and focus on the divisorial case.
Séminaire commun de géométrie
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 3 March 2025 14:00-16:00 Lieu : Oratrice ou orateur : Diego Izquierdo Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 28 April 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 5 May 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 2 June 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Past presentations
Zéros des 1-formes holomorphes, d'après Popa-Schnell, I
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 25 October 2017 14:30-16:00 Lieu : Oratrice ou orateur : Philippe Eyssidieux Résumé :Mini-cours sur Popa-Schnell "zeroes of holomorphic 1-forms" , I
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 25 October 2017 14:30-16:00 Lieu : Oratrice ou orateur : Philippe Eyssidieux Résumé :Connexions rigides, d'après Esnault-Groechenig, II
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 25 October 2017 11:00-12:30 Lieu : Oratrice ou orateur : Bruno Klingler Résumé :Autre aspect de Esnault-Groechenig, I
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 25 October 2017 11:00-12:30 Lieu : Oratrice ou orateur : Yohan Brunebarbe Résumé :Mini-cours sur l'intégralité de Esnault-Groechenig, I
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 25 October 2017 09:00-10:30 Lieu : Oratrice ou orateur : Bruno Klingler Résumé :Connexions rigides, d'après Esnault-Groechenig, I
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 25 October 2017 09:00-10:30 Lieu : Oratrice ou orateur : Bruno Klingler Résumé :Variétés de Fano singulières ayant un diviseur de nombre de Picard 1
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 23 October 2017 15:30-16:30 Lieu : Oratrice ou orateur : Pedro MONTERO Résumé :Tout d’abord, on rappel que l’existence d’un diviseur de
nombre de Picard 1 dans une variété de Fano lisse a des conséquences
sur la géométrie de la variété ambiante. Par exemple, le nombre de
Picard d’une telle variété de Fano est au plus 3. Ensuite, on présente
des résultats similaires concernant le cas des variétés (pas trop)
singulières, avec un regard particulier sur le cas de la dimension 3
et des variétés toriques en toute dimension.
Equations à la Plucker pour le schéma de Hilbert.
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 25 September 2017 15:30-16:30 Lieu : Oratrice ou orateur : Laurent Evain Résumé :Les paramétrages des sous-objets linéaires de l’espace projectif sont bien compris : un espace linéaire est représenté par les déterminants maximaux d’un système d’équations, et ces déterminants satisfont des équations de degré deux, dites de Plà¼cker. On se propose d’étendre une telle représentation à tous les sous-schémas algébriques de l’espace projectif et de définir des équations à la Plà¼cker pour le schéma de Hilbert. La méthode repose sur une nouvelle présentation du schéma de Hilbert comme quotient d’une variété de représentation de carquois.
Géométrie des variétés horosphériques de Fano
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 19 June 2017 15:30-16:30 Lieu : Oratrice ou orateur : Nicolas Perrin Résumé :B. Pasquier a décrit toutes les variétés horosphériques de Fano de nombre de Picard 1. Nous décrirons la géométrie de ces variétés et en particulier les propriétés de leurs courbes rationnelles, leur cohomologie et leur cohomologie quantique (travail en commun avec R. Gonzales, C. Pech et A. Samokhine) .
Compactifications magnifiques des immeubles de Bruhat-Tits
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 12 June 2017 15:30-16:30 Lieu : Oratrice ou orateur : Bertrand Rémy Résumé :Nous ferons des rappels sur le thème de la compactification des immeubles des groupes semi-simples sur les corps locaux. Dans le cas d’un groupe déployé, on peut identifier de façon équivariante la compactification de Satake-Berkovich maximale de l’immeuble euclidien correspondant, avec la compactification obtenue en plongeant l’immeuble dans l’espace de Berkovich associé à la compactification maximale du groupe. La relation entre les structures à l’infini, l’une provenant des strates de la compactification magnifique et l’autre des immeubles de Bruhat-Tits des facteurs de Lévi, peut être décrite. C’est un travail en commun avec A. Thuillier et A. Werner.