Upcoming presentations
The BNS sets of fundamental groups of complex algebraic varieties
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 25 November 2024 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Vasily Rogov Résumé :The BNS set of a finitely generated group $\Gamma$ is a certain canonical subset of the space of real additive characters on $\Gamma$. It is a subtle invariant of the group that naturally comes up in different questions of geometric and homological group theory. In the case when $\Gamma$ is the fundamental group of a compact Kähler manifold $X$, Thomas Delzant found a beautiful description of its BNS set in terms of holomorphic fibrations of $X$ over hyperbolic orbifold curves. Using it, he showed that if the fundamental group of a compact Kähler manifold is virtually solvable, it is in fact virtually nilpotent. I will explain the main ideas behind Delzant’s proof and how to generalise his theorems to the case when $X$ is a smooth complex quasi-projective variety. Time permitting, I will also discuss some applications and the case of quasi-Kähler manifolds.
Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 2 December 2024 14:00-16:00 Lieu : Oratrice ou orateur : Jean-René Chazottes Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 6 January 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 3 February 2025 14:00-16:00 Lieu : Oratrice ou orateur : Stefan Kebekus Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 3 March 2025 14:00-16:00 Lieu : Oratrice ou orateur : Hsueh-Yung Lin Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 28 April 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 5 May 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 2 June 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Past presentations
Théorie des modèles et groupe libre
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 16 December 2013 14:00-17:30 Lieu : Oratrice ou orateur : Chloé Perin Résumé :La théorie des modèle est l’étude des formules du premier-ordre sur une structure. Dans le cas des groupes, on peut penser à ces formules comme à des équations généralisées. Ces formules permettent alors d’exprimer certaines propriétés du groupe (l’abélianité par exemple) ou de ses éléments, alors que d’autre ne peuvent pas être exprimées. On peut par exemple se demander quand deux groupes non isomorphes satisfont les mêmes formules du premier ordre: le problème de Tarski consiste à déterminer si les groupes libres de rang distinct peuvent être distingués par des formules du premier ordre. Au début des années 2000, Sela et independamment Kharlampovich et Miasnikov ont montré que cela n’est pas possible. Les techniques de Sela, très géométriques, ont permis de montrer de nombreux autres résultats sur la théorie des modèles des groupes libres et des groupes hyperboliques. Un resultat qui montre bien la connection de tels problèmes avec la géométrie est qu’il est également impossible de distinguer un groupe de surface hyperbolique d’un groupe libre par des formules du premier ordre. A travers des exemples, j’essaierai de montrer comment les techniques de théorie géométrique des groupes peuvent permettre d’attaquer de telles questions.
Une caractérisation des feuilletages dont le fibré conormal est positif.
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 25 November 2013 14:00-15:00 Lieu : Oratrice ou orateur : Frédéric Touzet Résumé :Une caractérisation des feuilletages dont le fibré conormal est positif
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 25 November 2013 14:00-15:00 Lieu : Oratrice ou orateur : Frédéric Touzet Résumé :Sur une variété projective une distribution holomorphe de codimension 1 est automatiquement intégrable dès qu’elle satisfait une certaine propriété numérique (pseudo-effectivité du conormal). Elle définit donc un feuilletage que nous nous proposons de décrire dans cet exposé.