Complex geometry seminar

Upcoming presentations

The BNS sets of fundamental groups of complex algebraic varieties

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 25 November 2024 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Vasily Rogov Résumé :

The BNS set of a finitely generated group $\Gamma$ is a certain canonical subset of the space of real additive characters on $\Gamma$. It is a subtle invariant of the group that naturally comes up in different questions of geometric and homological group theory. In the case when $\Gamma$ is the fundamental group of a compact Kähler manifold $X$, Thomas Delzant found a beautiful description of its BNS set in terms of holomorphic fibrations of $X$ over hyperbolic orbifold curves. Using it, he showed that if the fundamental group of a compact Kähler manifold is virtually solvable, it is in fact virtually nilpotent. I will explain the main ideas behind Delzant’s proof and how to generalise his theorems to the case when $X$ is a smooth complex quasi-projective variety. Time permitting, I will also discuss some applications and the case of quasi-Kähler manifolds.


Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 December 2024 14:00-16:00 Lieu : Oratrice ou orateur : Jean-René Chazottes Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 6 January 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 3 February 2025 14:00-16:00 Lieu : Oratrice ou orateur : Stefan Kebekus Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 3 March 2025 14:00-16:00 Lieu : Oratrice ou orateur : Hsueh-Yung Lin Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 28 April 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 5 May 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 June 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Abonnement iCal

Past presentations

Dégénérescences de transformations de Cremona du plan

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 26 May 2014 15:00-15:00 Lieu : Oratrice ou orateur : Jérémy Blanc Résumé :

Je présenterai le groupe des transformations de Cremona du plan et la topologie naturelle qu’on peut mettre sur celui-ci. L’ensemble des applications de degré borné est fermé et la question naturelle qui survient est de déterminer quelles applications de petit degré sont limites de celles de plus haut degré. Je donnerai quelques réponses à  ces question. Travail en commun avec Alberto Calabri.


Théorie de Nevanlinna et rationnalité des surfaces

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 14 April 2014 15:30-16:00 Lieu : Oratrice ou orateur : Jörg Winkelmann Résumé :

Formes différentielles symétriques et variations de structures de Hodge

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 14 April 2014 14:00-15:00 Lieu : Oratrice ou orateur : Yohan Brunebarbe Résumé :

Soit $D$ un diviseur à  croisements normaux simples dans une variété kählérienne compacte $X$. Dans mon exposé j’expliquerai pourquoi l’existence sur $X-D$ d’une variation de structures de Hodge polarisées avec structure entière force l’existence d’une forme différentielle symétrique logarithmique non triviale, i.e. une section non nulle du faisceau $S^{>0}Omega^1(log D)$.
Le cas compact ($D = emptyset$) était l’un des résultats principaux d’un travail en commun avec Bruno Klingler et Burt Totaro. La preuve dans le cas général dépend fortement de la construction d’un foncteur “cycles proches” global dans une catégorie adéquate.
Comme application immédiate, on obtient de nouvelles restrictions pour les variétés qui supportent une famille non isotriviale de variétés polarisées qui vérifient un théorème de Torelli infinitésimal.


Résultats de semi-continuité pour la dimension algébrique de variétés complexes compactes

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 7 April 2014 14:00-15:00 Lieu : Oratrice ou orateur : Daniel Barlet Résumé :

La question suivante est classique en Géométrie complexe depuis fort longtemps : Soit $(X_t)$ , $t$ décrivant un disque $D$ de centre $0$, une famille holomorphe de variétés complexes compactes telle que pour t différent de $0$ la variété $X_t$ soit projective. Alors $X_0$ est-elle biméromorphe à  une variété projective ? Dans le cas o๠l’on suppose $X_0$ kahlérienne,la solution est simple. Sans hypothèse supplémentaire elle est encore ouverte à  ce jour. Dans un article aux Invent. Math. de l’an passé, Dan Popovici résoud cette question dans deux cas intéressants (donc avec des hypothèses supplémentaires assez faibles). Nous expliquerons comment l’utilisation de l’espace des cycles relatifs de codimension 1 de la famille considérée permet de généraliser notablement les résultats présentés dans cet article.


Finite rank vector bundles on ind-varieties

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 31 March 2014 14:00-15:00 Lieu : Oratrice ou orateur : Ivan Penkov Résumé :

In this talk I will recall a theorem by Barth, Van de Ven, Tyurin and Sato claiming that a finite rank vector bundle on the infinite complex projective space $P^{infty}$ is isomorphic to a direct sum of line bundles. Then I will describe sufficient conditions on a locally closed ind-variety which ensure that the same result holds on $X$. I will also exhibit natural classes of linear locally complete ind-varieties which satisfy these sufficient conditions.


Surfaces isogenous to a product of curves, moduli spaces and finite groups

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 24 March 2014 14:00-15:00 Lieu : Oratrice ou orateur : Matteo Penegini Résumé :

In this talk we shall present a group theoretical method to calculate the number of connected components of the moduli space of surfaces of general type isogenous to a product of curves. Then, we give then asymptotic growth of the number of these components for certain families of surfaces isogenous to a product with group either an alternating group, or a symmetric group or an abelian group or finally 2-groups. With our methods we get a better lower bound than the one obtained by Manetti. (jww. S.Garion/M.Loenne).


Sur la factorisation de diviseurs compacts dans les revêtements non compacts

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 20 March 2014 14:00-15:00 Lieu : Oratrice ou orateur : Pascal Dingoyan Résumé :

Je réponds, dans certains cas, à  une question de Frédéric Campana. Soit $C$ est une courbe sur une surface Kählérienne telle que :
1) $C.C=0$;
2) l’image du groupe fondamental de $C$ dans le groupe fondamental de $X$ est d’indice infini.
Alors un multiple de $C$ est une fibre d’une application holomorphe de $X$ vers une courbe.


Colloquium Grégoire Allaire, "Optimisation topologique de structures et fabrication additive"

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 24 February 2014 14:00-15:00 Lieu : Oratrice ou orateur : Kévin Langlois Résumé :

L’objet de cet exposé est l’étude des variétés algébriques normales affines complexes munies d’une opération d’un tore algébrique. Nous rappellerons une description combinatoire du à  Altmann et à  Hausen dans le cas o๠l’orbite générale est de codimension un. Ensuite, nous donnerons quelques résultats nouveaux les concernant.


Métriques de Kähler-Einstein à  singularités coniques

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 17 February 2014 14:00-15:00 Lieu : Oratrice ou orateur : Henri Guenancia Résumé :

Je présenterai un travail en collaboration avec Mihai Paun dans lequel nous démontrons l’existence de métriques de Kähler Einstein à  singularités coniques le long d’un diviseur à  croisement normaux. Si le temps le permet, j’expliquerai aussi comment généraliser ces résultats au cadre singulier des paires klt d’une part et à  celui ces métriques à  singularités mixtes cusp et coniques d’autre part. On verra également le lien avec des théorèmes d’annulation de champs de tenseurs holomorphes orbifoldes.


Déformation d'applications harmoniques tordues et variation de l'énergie

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 6 January 2014 14:00-15:00 Lieu : Oratrice ou orateur : Marco Spinaci Résumé :

Les propriétés de l’espace de modules des fibrés de Higgs sur une surface de Riemann compacte construit par N. Hitchin en 1987 ont été l’objet de nombreux travaux. Notamment, C. Simpson, en 1994, a donné une généralisation de la construction de cet espace pour toutes variétés projectives lisses. Pourtant, l’étude de la fonction de l’énergie d’un champs de Higgs (qui est plus généralement définie sur l’espace des représentations du groupe fondamental de n’importe quelle variété riemannienne) n’a pas encore été systématiquement développé en dimension supérieure. Après avoir résumé les idées fondamentales de la correspondance entre représentations et fibrés de Higgs obtenue par les application harmoniques, on se propose dans cet exposé de présenter une approche à  cet étude par le développement d’une théorie des déformations des applications harmoniques tordues jusqu’au second ordre. Cette théorie permet d’établir des formules pour les variations de l’énergie, avec lesquelles on arrive à  démontrer l’identification entre les points critiques de l’énergie et les variations polarisées de structure de Hodge complexes. On peut aussi démontrer que l’énergie est un potentiel de Kähler pour la structure complexe naturelle et finalement calculer les valeurs propres de la matrice hessienne de l’énergie.


23 24 25 26 27 28 29