Complex geometry seminar

Upcoming presentations

The BNS sets of fundamental groups of complex algebraic varieties

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 25 November 2024 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Vasily Rogov Résumé :

The BNS set of a finitely generated group $\Gamma$ is a certain canonical subset of the space of real additive characters on $\Gamma$. It is a subtle invariant of the group that naturally comes up in different questions of geometric and homological group theory. In the case when $\Gamma$ is the fundamental group of a compact Kähler manifold $X$, Thomas Delzant found a beautiful description of its BNS set in terms of holomorphic fibrations of $X$ over hyperbolic orbifold curves. Using it, he showed that if the fundamental group of a compact Kähler manifold is virtually solvable, it is in fact virtually nilpotent. I will explain the main ideas behind Delzant’s proof and how to generalise his theorems to the case when $X$ is a smooth complex quasi-projective variety. Time permitting, I will also discuss some applications and the case of quasi-Kähler manifolds.


Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 December 2024 14:00-16:00 Lieu : Oratrice ou orateur : Jean-René Chazottes Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 6 January 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 3 February 2025 14:00-16:00 Lieu : Oratrice ou orateur : Stefan Kebekus Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 3 March 2025 14:00-16:00 Lieu : Oratrice ou orateur : Hsueh-Yung Lin Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 28 April 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 5 May 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 June 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Abonnement iCal

Past presentations

Structures de Hodge lacées et fibrés harmoniques

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 16 November 2015 14:00-15:00 Lieu : Oratrice ou orateur : Jeremy Daniel Résumé :

La théorie de Hodge non-abélienne étudie la correspondance entre fibrés
plats et fibrés de Higgs sur une variété projective, correspondance
établie via la notion intermédiaire de fibré harmonique. On expliquera
comment la donnée d’un fibré harmonique est équivalente à  la donnée d’une
variation de structures de Hodge lacées, ces structure étant des analogues
en dimension infinie des structures de Hodge. Cette approche permet en
particulier d’associer une application des périodes à  tout fibré
harmonique, et ainsi d’imiter les techniques de théorie de Hodge
classique.


Semi-positivité du cotangent logarithmique et conjecture de Shafarevich-Viehweg [d'après Campana, Păun, Taji,...]

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 2 November 2015 14:00-15:00 Lieu : Oratrice ou orateur : Benoît Claudon Résumé :

Démontrée par A. Parshin et S. Arakelov au début des années 1970,
la conjecture d’hyperbolicité de Shafarevich affirme qu’une famille de
courbes de genre g ≥ 2 paramétrée par une courbe non hyperbolique
(c’est-à -dire isomorphe à  $mathbb P^1$, $mathbb C$, $mathbb C^*$ ou une courbe elliptique)
est automatiquement isotriviale : les modules des fibres lisses sont
constants. En dimension supérieure, les travaux de E. Viehweg sur les
modules des variétés canoniquement polarisées l’ont amené à  formuler la
généralisation suivante : si une famille de variétés canoniquement
polarisées (paramétrée par une base quasi-projective) est de variation
maximale, alors la base est de log-type général. Il s’agit donc d’une
forme d’hyperbolicité algébrique attendue pour l’espace des modules. En
adaptant des résultats dus à  Y. Miyaoka sur la semi-positivité
générique du fibré cotangent au cadre logarithmique (et orbifolde), F.
Campana et M. Păun ont récemment obtenu une réponse positive à  la
conjecture de Viehweg. Cet exposé sera également l’occasion de
donner un aperçu de la classification des orbifoldes développée par
F. Campana. C’est d’ailleurs dans ce cadre que s’énonce la forme
optimale de la conjecture de Viehweg démontrée par B. Taji.


Familles d'espaces de modules de faisceaux stables sur les surfaces K3

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 8 June 2015 14:00-15:00 Lieu : Oratrice ou orateur : Matei Toma Résumé :

Structure de l'espace de Teichmà¼ller en dimension supérieure.

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 1 June 2015 14:00-15:00 Lieu : Oratrice ou orateur : Laurent Meersseman Résumé :

L’espace de Teichmà¼ller d’une variété $X$ réelle compacte orientée est classiquement défini comme le quotient de l’ensemble des opérateurs complexes sur $X$ par l’action du groupe des difféomorphismes isotopes à  l’identité. C’est naturellement une variété complexe lorsque $X$ est une surface. En dimension supérieure, malheureusement, ce n’est en général ni une variété ni un espace analytique, mais seulement un champ analytique. Le but de cet exposé est de décrire la structure locale de ce champ, en comparant l’espace de Teichmà¼ller au voisinage d’un point $J$ et l’espace de Kuranishi $K$ de $J$. Le point central est d’expliquer qu’il ne s’agit pas simplement du quotient de $K$ par l’action du groupe d’automorphismes de $J$, mais qu’il faut intégrer l’holonomie d’une structure multifeuilletée de l’espace des opérateurs complexes sur $X$.


Variation des espaces de modules de faisceaux semistables sur les variétés de dimension supérieure

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 18 May 2015 14:00-15:00 Lieu : Oratrice ou orateur : Matei Toma Résumé :

Gieseker et Maruyama ont construit des espaces de modules de faisceaux semistables au dessus des variétés projectives polarisées de dimension supérieure a un. Le changement de la polarisation entraine en général une variation des espaces de modules correspondants, variation qui a été l’objet d’études approfondies en dimension deux. La poursuite de ces études en dimension supérieure s’est heurtée a l’apparition de façon essentielle des polarisations irrationnelles pour lesquelles même une construction des espaces de modules n’était pas disponible. Dans cet exposé nous présentons un travail en commun avec Daniel Greb et Julius Ross, dans lequel nous introduisons et étudions une nouvelle notion de stabilité qui nous permet de résoudre ces problèmes de construction et de variation au moins en dimension trois. Les nouveaux espaces de modules apparaissent comme des sous-schémas des espaces de modules de représentations de carquois.


Formes différentielles symétriques sur les variétés intersections complètes

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 11 May 2015 14:00-15:00 Lieu : Oratrice ou orateur : Damian Brotbek Résumé :

L’existence de formes différentielles symétriques sur une variété projective a de nombreuses conséquences géométriques.
Dans cette exposé nous étudierons les formes différentielles symétriques sur les variétés intersections complètes dans l’espace projectif. Nous expliquerons comment dans certains cas il est possible de construire explicitement de tels objets et quelles conséquences on peut en tirer.


Feuilletages lisses sur variétés homogènes compactes kaehleriennes

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 4 May 2015 14:00-15:00 Lieu : Oratrice ou orateur : Federico Lo Bianco Résumé :

Codimension 1 (possibly singular) foliations on complex tori have been classified in
a work by Brunella, whereas Ghys studied codimension 1 smooth foliations on homogeneous
varieties, and managed to give a complete classification in the Kähler case. In a
joint work with Pereira we managed to find a generalization of Ghys’s results for smooth
foliations of arbitrary codimension on homogeneous compact Kähler manifolds.
The first result is a (rough) general classification theorem for such foliations; as an immediate
corollary, we prove that in the case of homogeneous compact rational Kähler manifolds
all smooth foliations are in fact locally trivial fibrations. By a more refined analysis of the
sheaves defining the foliation, we also prove that either there exists a non-trivial invariant
subvariety or the foliation is essentially given by a linear foliation on a torus.


Sous-groupes résolubles du groupe de Cremona

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 27 April 2015 14:00-15:00 Lieu : Oratrice ou orateur : Julie Déserti Résumé :

le groupe de Cremona est le groupe des transformations birationnelles du plan projectif complexe dans lui-même. Après avoir rappelé l’action du groupe de Cremona sur l’espace de Picard-Manin, j’utiliserai celle-ci pour décrire les sous-groupes résolubles du groupe de Cremona.


Perverse sheaves and applications

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 7 April 2015 14:00-15:00 Lieu : Oratrice ou orateur : Annonce : mini-conférence à  Dijon Résumé :

Organisé par Johannes Nagel (Dijon) et Damien Mégy (Nancy). Deux mini-cours de trois heures: “Introduction to Mixed Hodge Modules” par Claude Sabbah et Damien Mégy, et “The role of algebraic tori in the Baily-Borel compactifications: Hodge and group theoretic aspects”, par Chris Peters.

Plus d’informations sur http://math.u-bourgogne.fr/IMB/dubouloz/PS-A-2015/


Déformations isomonodromiques algébriques

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 30 March 2015 14:00-15:00 Lieu : Oratrice ou orateur : Gaà«l Cousin Résumé :

L’exposé portera sur les connexions logarithmiques sur la sphère de Riemann et leurs déformations isomonodromiques.
On introduira une notion d’algébrisabilté pour le germe de déformation isomonodromique universelle d’une telle connexion.
Le résultat principal est le suivant (avec quelques hypothèses) :
Pour un connexion logarithmique D sur un fibré vectoriel au dessus de CP1,
la déformation isomonodromique universelle de D est algébrisable
si et seulement si
la classe de conjugaison de sa monodromie a une orbite finie sous le Mapping Class Group de la sphère épointée.

Si le temps le permet on présentera un travail en cours (avec D. Moussard) déterminant les orbites finies qui apparaissent dans cet énoncé, pour les connexions de rang deux réductibles.


20 21 22 23 24 25 26 27 28 29