Séminaires

A venir

Les principaux séminaires de l’équipe ont lieu le lundi aux horaires suivants :

  • Séminaire de géométrie différentielle : 14h-15h
  • Séminaire de géométrie complexe : 15h30-16h30

Les responsables sont Damian Brotbeck pour la géométrie complexe et Benoit Daniel pour la géométrie différentielle.


Séminaire commun de géométrie

Catégorie d’évènement : Géométrie Date/heure : 28 avril 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d’évènement : Géométrie Date/heure : 5 mai 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d’évènement : Géométrie Date/heure : 2 juin 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Titre à préciser

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 16 juin 2025 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Emmanuel Humbert Résumé :

Séminaire Commun – Viet Cuong Pham

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 7 juillet 2025 14:00-16:00 Lieu : Oratrice ou orateur : Viet Cuong Pham Résumé :

Archives

Structure de l'espace de Teichmà¼ller en dimension supérieure.

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 1 juin 2015 14:00-15:00 Lieu : Oratrice ou orateur : Laurent Meersseman Résumé :

L’espace de Teichmà¼ller d’une variété X réelle compacte orientée est classiquement défini comme le quotient de l’ensemble des opérateurs complexes sur X par l’action du groupe des difféomorphismes isotopes à  l’identité. C’est naturellement une variété complexe lorsque X est une surface. En dimension supérieure, malheureusement, ce n’est en général ni une variété ni un espace analytique, mais seulement un champ analytique. Le but de cet exposé est de décrire la structure locale de ce champ, en comparant l’espace de Teichmà¼ller au voisinage d’un point J et l’espace de Kuranishi K de J. Le point central est d’expliquer qu’il ne s’agit pas simplement du quotient de K par l’action du groupe d’automorphismes de J, mais qu’il faut intégrer l’holonomie d’une structure multifeuilletée de l’espace des opérateurs complexes sur X.


Quelques résultats de rigidité pour les variétés à  bord feuilleté

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 19 mai 2015 14:00-15:00 Lieu : Oratrice ou orateur : Nicolas Ginoux Résumé :

Travail en commun avec Fida El Chami, Georges Habib et Roger Nakad. En nous basant sur des résultats d’Oussama Hijazi, Sebastià¡n Montiel et Simon Raulot, nous montrerons que, sous certaines hypothèses de courbure, une variété compacte à  bord feuilleté est nécessairement un produit riemannien, au moins localement.


Variation des espaces de modules de faisceaux semistables sur les variétés de dimension supérieure

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 18 mai 2015 14:00-15:00 Lieu : Oratrice ou orateur : Matei Toma Résumé :

Gieseker et Maruyama ont construit des espaces de modules de faisceaux semistables au dessus des variétés projectives polarisées de dimension supérieure a un. Le changement de la polarisation entraine en général une variation des espaces de modules correspondants, variation qui a été l’objet d’études approfondies en dimension deux. La poursuite de ces études en dimension supérieure s’est heurtée a l’apparition de façon essentielle des polarisations irrationnelles pour lesquelles même une construction des espaces de modules n’était pas disponible. Dans cet exposé nous présentons un travail en commun avec Daniel Greb et Julius Ross, dans lequel nous introduisons et étudions une nouvelle notion de stabilité qui nous permet de résoudre ces problèmes de construction et de variation au moins en dimension trois. Les nouveaux espaces de modules apparaissent comme des sous-schémas des espaces de modules de représentations de carquois.


Groupes de torsion agissant sur un espace CAT(0)

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 12 mai 2015 14:00-15:00 Lieu : Oratrice ou orateur : Rémi Coulon Résumé :

Depuis le début du 20ème siècle, les groupes de torsion infinis ont été la source de nombreux développements en théorie de groupe : groupes de Burnside libre, monstre de Tarski, groupe de Grigorchuck, etc. D’un point de vue géométrique, on aimerait comprendre sur quel type d’espaces un tel groupe peut agir « raisonnablement » par isométries. Dans cet exposé, on étudiera le cas des espaces CAT(0) et plus précisément des complexes cubiques CAT(0). En particulier on présentera un exemple de groupe non moyennable muni d’une action propre sur un complexe cubique CAT(0). Le contenu de cet exposé est un travail en collaboration avec Vincent Guirardel.


Formes différentielles symétriques sur les variétés intersections complètes

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 11 mai 2015 14:00-15:00 Lieu : Oratrice ou orateur : Damian Brotbek Résumé :

L’existence de formes différentielles symétriques sur une variété projective a de nombreuses conséquences géométriques.
Dans cette exposé nous étudierons les formes différentielles symétriques sur les variétés intersections complètes dans l’espace projectif. Nous expliquerons comment dans certains cas il est possible de construire explicitement de tels objets et quelles conséquences on peut en tirer.


Feuilletages lisses sur variétés homogènes compactes kaehleriennes

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 4 mai 2015 14:00-15:00 Lieu : Oratrice ou orateur : Federico Lo Bianco Résumé :

Codimension 1 (possibly singular) foliations on complex tori have been classified in
a work by Brunella, whereas Ghys studied codimension 1 smooth foliations on homogeneous
varieties, and managed to give a complete classification in the Kähler case. In a
joint work with Pereira we managed to find a generalization of Ghys’s results for smooth
foliations of arbitrary codimension on homogeneous compact Kähler manifolds.
The first result is a (rough) general classification theorem for such foliations; as an immediate
corollary, we prove that in the case of homogeneous compact rational Kähler manifolds
all smooth foliations are in fact locally trivial fibrations. By a more refined analysis of the
sheaves defining the foliation, we also prove that either there exists a non-trivial invariant
subvariety or the foliation is essentially given by a linear foliation on a torus.


Entropie extrémale et flots de Yamabe (av. P. Suarez-Serrato, UNAM Mexico)

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 28 avril 2015 14:00-15:00 Lieu : Oratrice ou orateur : Samuel Tapie Résumé :

Le flot géodésique sur les variétés riemanniennes est un système dynamique d’origine purement géométrique ; cependant relier ses propriétés dynamique à  la géométrie de la variété sous-jacente n’est pas toujours facile. Les travaux de Katok et de Besson-Courtois-Gallot ont montré que pour les variétés compactes à  courbure sectionnelle négative, les variétés localement symétriques correspondent exactement aux extrema de l’entropie. Qu’en est-il pour le flot sur des variétés qui n’admettent pas de structure localement symétrique ? Pour des variétés non-compactes ? Après avoir rappelé l’historique de ce problème, nous présenterons une réponse partielle à  ces questions : dans chaque classe conforme de métrique, les extrema de l’entropie correspondent à  des métriques à  courbure scalaire constante.


Sous-groupes résolubles du groupe de Cremona

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 27 avril 2015 14:00-15:00 Lieu : Oratrice ou orateur : Julie Déserti Résumé :

le groupe de Cremona est le groupe des transformations birationnelles du plan projectif complexe dans lui-même. Après avoir rappelé l’action du groupe de Cremona sur l’espace de Picard-Manin, j’utiliserai celle-ci pour décrire les sous-groupes résolubles du groupe de Cremona.


Perverse sheaves and applications

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 7 avril 2015 14:00-15:00 Lieu : Oratrice ou orateur : Annonce : mini-conférence à  Dijon Résumé :

Organisé par Johannes Nagel (Dijon) et Damien Mégy (Nancy). Deux mini-cours de trois heures: « Introduction to Mixed Hodge Modules » par Claude Sabbah et Damien Mégy, et « The role of algebraic tori in the Baily-Borel compactifications: Hodge and group theoretic aspects », par Chris Peters.

Plus d’informations sur http://math.u-bourgogne.fr/IMB/dubouloz/PS-A-2015/


Déformations isomonodromiques algébriques

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 30 mars 2015 14:00-15:00 Lieu : Oratrice ou orateur : Gaà«l Cousin Résumé :

L’exposé portera sur les connexions logarithmiques sur la sphère de Riemann et leurs déformations isomonodromiques.
On introduira une notion d’algébrisabilté pour le germe de déformation isomonodromique universelle d’une telle connexion.
Le résultat principal est le suivant (avec quelques hypothèses) :
Pour un connexion logarithmique D sur un fibré vectoriel au dessus de CP1,
la déformation isomonodromique universelle de D est algébrisable
si et seulement si
la classe de conjugaison de sa monodromie a une orbite finie sous le Mapping Class Group de la sphère épointée.

Si le temps le permet on présentera un travail en cours (avec D. Moussard) déterminant les orbites finies qui apparaissent dans cet énoncé, pour les connexions de rang deux réductibles.