Séminaires

A venir

Les principaux séminaires de l’équipe ont lieu le lundi aux horaires suivants :

  • Séminaire de géométrie différentielle : 14h-15h
  • Séminaire de géométrie complexe : 15h30-16h30

Les responsables sont Damian Brotbeck pour la géométrie complexe et Benoit Daniel pour la géométrie différentielle.


Séminaire Commun – Homotopies Stables de la Sphère

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 7 juillet 2025 14:00-16:00 Lieu : Oratrice ou orateur : Viet Cuong Pham Résumé :
 1) Exposé introductif :
   – Titre : Groupes d’homotopie stable de la sphère
   – Résumé : Après avoir rappelé les groupes d’homotopie (stable) de la sphère, j’établirai un lien entre le dernier avec les structures différentielles exotiques sur les sphères topologiques. L’invariant de Kervaire entre alors en jeu. Je terminerai cet exposé avec la suite spectrale d’Adams qui est un outil important pour calculer les groupes d’homotopie stable.
2) Exposé spécialisé :
  – Titre : Théorie d’homotopie stable chromatique
  – Résumé : La théorie d’homotopie chromatique introduit une filtration sur les groupes d’homotopie stable via la localisation de Bousfield par les E-théories homologiques de Morava à l’image de la filtration des groupes formels via leurs hauteurs. Les calculs des strates de cette filtration qui sont plus abordables que le calcul direct des groupes d’homotopie stable permettent de détecter des familles infinies d’éléments de ces derniers. Je commencerai l’exposé par une introduction à la théorie générale, puis parlerai des avancés dans le calcul du deuxième niveau de la filtration chromatique et pour finir, expliquerai des applications dans la détection des structures exotiques sur les sphères.

Archives

Structures de Hodge lacées et fibrés harmoniques

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 16 novembre 2015 14:00-15:00 Lieu : Oratrice ou orateur : Jeremy Daniel Résumé :

La théorie de Hodge non-abélienne étudie la correspondance entre fibrés
plats et fibrés de Higgs sur une variété projective, correspondance
établie via la notion intermédiaire de fibré harmonique. On expliquera
comment la donnée d’un fibré harmonique est équivalente à  la donnée d’une
variation de structures de Hodge lacées, ces structure étant des analogues
en dimension infinie des structures de Hodge. Cette approche permet en
particulier d’associer une application des périodes à  tout fibré
harmonique, et ainsi d’imiter les techniques de théorie de Hodge
classique.


Semi-positivité du cotangent logarithmique et conjecture de Shafarevich-Viehweg [d'après Campana, Păun, Taji,…]

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 2 novembre 2015 14:00-15:00 Lieu : Oratrice ou orateur : Benoît Claudon Résumé :

Démontrée par A. Parshin et S. Arakelov au début des années 1970,
la conjecture d’hyperbolicité de Shafarevich affirme qu’une famille de
courbes de genre g ≥ 2 paramétrée par une courbe non hyperbolique
(c’est-à -dire isomorphe à  $mathbb P^1$, $mathbb C$, $mathbb C^*$ ou une courbe elliptique)
est automatiquement isotriviale : les modules des fibres lisses sont
constants. En dimension supérieure, les travaux de E. Viehweg sur les
modules des variétés canoniquement polarisées l’ont amené à  formuler la
généralisation suivante : si une famille de variétés canoniquement
polarisées (paramétrée par une base quasi-projective) est de variation
maximale, alors la base est de log-type général. Il s’agit donc d’une
forme d’hyperbolicité algébrique attendue pour l’espace des modules. En
adaptant des résultats dus à  Y. Miyaoka sur la semi-positivité
générique du fibré cotangent au cadre logarithmique (et orbifolde), F.
Campana et M. Păun ont récemment obtenu une réponse positive à  la
conjecture de Viehweg. Cet exposé sera également l’occasion de
donner un aperçu de la classification des orbifoldes développée par
F. Campana. C’est d’ailleurs dans ce cadre que s’énonce la forme
optimale de la conjecture de Viehweg démontrée par B. Taji.


Submanifolds with nonpositive extrinsic curvature

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 30 juin 2015 14:00-15:00 Lieu : Oratrice ou orateur : Guilherme Machado de Freitas Résumé :

We prove that complete submanifolds, on which the Omori-Yau weak maximum principle for the Hessian holds, with low codimension and bounded by cylinders of small radius must have points rich in large positive extrinsic curvature. The lower the codimension is, the richer such points are. The smaller the radius is, the larger such curvatures are. This work unifies and generalizes several previous results on submanifolds with nonpositive extrinsic curvature. Joint work with S. Canevari and F. Manfio.


Familles d'espaces de modules de faisceaux stables sur les surfaces K3

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 8 juin 2015 14:00-15:00 Lieu : Oratrice ou orateur : Matei Toma Résumé :

Structure de l'espace de Teichmà¼ller en dimension supérieure.

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 1 juin 2015 14:00-15:00 Lieu : Oratrice ou orateur : Laurent Meersseman Résumé :

L’espace de Teichmà¼ller d’une variété $X$ réelle compacte orientée est classiquement défini comme le quotient de l’ensemble des opérateurs complexes sur $X$ par l’action du groupe des difféomorphismes isotopes à  l’identité. C’est naturellement une variété complexe lorsque $X$ est une surface. En dimension supérieure, malheureusement, ce n’est en général ni une variété ni un espace analytique, mais seulement un champ analytique. Le but de cet exposé est de décrire la structure locale de ce champ, en comparant l’espace de Teichmà¼ller au voisinage d’un point $J$ et l’espace de Kuranishi $K$ de $J$. Le point central est d’expliquer qu’il ne s’agit pas simplement du quotient de $K$ par l’action du groupe d’automorphismes de $J$, mais qu’il faut intégrer l’holonomie d’une structure multifeuilletée de l’espace des opérateurs complexes sur $X$.


Quelques résultats de rigidité pour les variétés à  bord feuilleté

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 19 mai 2015 14:00-15:00 Lieu : Oratrice ou orateur : Nicolas Ginoux Résumé :

Travail en commun avec Fida El Chami, Georges Habib et Roger Nakad. En nous basant sur des résultats d’Oussama Hijazi, Sebastià¡n Montiel et Simon Raulot, nous montrerons que, sous certaines hypothèses de courbure, une variété compacte à  bord feuilleté est nécessairement un produit riemannien, au moins localement.


Variation des espaces de modules de faisceaux semistables sur les variétés de dimension supérieure

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 18 mai 2015 14:00-15:00 Lieu : Oratrice ou orateur : Matei Toma Résumé :

Gieseker et Maruyama ont construit des espaces de modules de faisceaux semistables au dessus des variétés projectives polarisées de dimension supérieure a un. Le changement de la polarisation entraine en général une variation des espaces de modules correspondants, variation qui a été l’objet d’études approfondies en dimension deux. La poursuite de ces études en dimension supérieure s’est heurtée a l’apparition de façon essentielle des polarisations irrationnelles pour lesquelles même une construction des espaces de modules n’était pas disponible. Dans cet exposé nous présentons un travail en commun avec Daniel Greb et Julius Ross, dans lequel nous introduisons et étudions une nouvelle notion de stabilité qui nous permet de résoudre ces problèmes de construction et de variation au moins en dimension trois. Les nouveaux espaces de modules apparaissent comme des sous-schémas des espaces de modules de représentations de carquois.


Groupes de torsion agissant sur un espace CAT(0)

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 12 mai 2015 14:00-15:00 Lieu : Oratrice ou orateur : Rémi Coulon Résumé :

Depuis le début du 20ème siècle, les groupes de torsion infinis ont été la source de nombreux développements en théorie de groupe : groupes de Burnside libre, monstre de Tarski, groupe de Grigorchuck, etc. D’un point de vue géométrique, on aimerait comprendre sur quel type d’espaces un tel groupe peut agir « raisonnablement » par isométries. Dans cet exposé, on étudiera le cas des espaces CAT(0) et plus précisément des complexes cubiques CAT(0). En particulier on présentera un exemple de groupe non moyennable muni d’une action propre sur un complexe cubique CAT(0). Le contenu de cet exposé est un travail en collaboration avec Vincent Guirardel.


Formes différentielles symétriques sur les variétés intersections complètes

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 11 mai 2015 14:00-15:00 Lieu : Oratrice ou orateur : Damian Brotbek Résumé :

L’existence de formes différentielles symétriques sur une variété projective a de nombreuses conséquences géométriques.
Dans cette exposé nous étudierons les formes différentielles symétriques sur les variétés intersections complètes dans l’espace projectif. Nous expliquerons comment dans certains cas il est possible de construire explicitement de tels objets et quelles conséquences on peut en tirer.


Feuilletages lisses sur variétés homogènes compactes kaehleriennes

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 4 mai 2015 14:00-15:00 Lieu : Oratrice ou orateur : Federico Lo Bianco Résumé :

Codimension 1 (possibly singular) foliations on complex tori have been classified in
a work by Brunella, whereas Ghys studied codimension 1 smooth foliations on homogeneous
varieties, and managed to give a complete classification in the Kähler case. In a
joint work with Pereira we managed to find a generalization of Ghys’s results for smooth
foliations of arbitrary codimension on homogeneous compact Kähler manifolds.
The first result is a (rough) general classification theorem for such foliations; as an immediate
corollary, we prove that in the case of homogeneous compact rational Kähler manifolds
all smooth foliations are in fact locally trivial fibrations. By a more refined analysis of the
sheaves defining the foliation, we also prove that either there exists a non-trivial invariant
subvariety or the foliation is essentially given by a linear foliation on a torus.