Séminaires

A venir

Les principaux séminaires de l’équipe ont lieu le lundi aux horaires suivants :

  • Séminaire de géométrie différentielle : 14h-15h
  • Séminaire de géométrie complexe : 15h30-16h30

Les responsables sont Damian Brotbeck pour la géométrie complexe et Benoit Daniel pour la géométrie différentielle.


Séminaire commun de géométrie

Catégorie d’évènement : Géométrie Date/heure : 28 avril 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d’évènement : Géométrie Date/heure : 5 mai 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d’évènement : Géométrie Date/heure : 2 juin 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Titre à préciser

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 16 juin 2025 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Emmanuel Humbert Résumé :

Séminaire Commun – Viet Cuong Pham

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 7 juillet 2025 14:00-16:00 Lieu : Oratrice ou orateur : Viet Cuong Pham Résumé :

Archives

Connexions rigides, d'après Esnault-Groechenig, III

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 26 octobre 2017 09:00-10:30 Lieu : Oratrice ou orateur : Yohan Brunebarbe Résumé :

Zéros des 1-formes holomorphes, d'après Popa-Schnell, I

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 25 octobre 2017 14:30-16:00 Lieu : Oratrice ou orateur : Philippe Eyssidieux Résumé :

Mini-cours sur Popa-Schnell "zeroes of holomorphic 1-forms" , I

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 25 octobre 2017 14:30-16:00 Lieu : Oratrice ou orateur : Philippe Eyssidieux Résumé :

Connexions rigides, d'après Esnault-Groechenig, II

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 25 octobre 2017 11:00-12:30 Lieu : Oratrice ou orateur : Bruno Klingler Résumé :

Autre aspect de Esnault-Groechenig, I

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 25 octobre 2017 11:00-12:30 Lieu : Oratrice ou orateur : Yohan Brunebarbe Résumé :

Mini-cours sur l'intégralité de Esnault-Groechenig, I

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 25 octobre 2017 09:00-10:30 Lieu : Oratrice ou orateur : Bruno Klingler Résumé :

Connexions rigides, d'après Esnault-Groechenig, I

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 25 octobre 2017 09:00-10:30 Lieu : Oratrice ou orateur : Bruno Klingler Résumé :

Variétés de Fano singulières ayant un diviseur de nombre de Picard 1

Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 23 octobre 2017 15:30-16:30 Lieu : Oratrice ou orateur : Pedro MONTERO Résumé :

Tout d’abord, on rappel que l’existence d’un diviseur de
nombre de Picard 1 dans une variété de Fano lisse a des conséquences
sur la géométrie de la variété ambiante. Par exemple, le nombre de
Picard d’une telle variété de Fano est au plus 3. Ensuite, on présente
des résultats similaires concernant le cas des variétés (pas trop)
singulières, avec un regard particulier sur le cas de la dimension 3
et des variétés toriques en toute dimension.


Variétés de caractères pour les formes réelles de SL(n,$mathbb C$)

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 23 octobre 2017 14:00-15:00 Lieu : Oratrice ou orateur : Miguel Acosta Résumé :

Dans l’étude des structures géométriques sur une variété, on est souvent amené à  étudier l’espace des représentations de son groupe fondamental $Gamma$ à  valeurs dans un groupe de Lie donné. Lorsque ce groupe est SL(n,$mathbb C$), on dispose de la variété des caractères, qui est un objet algébrique permettant cette étude. Après avoir donné la définition et quelques propriétés de la variété des caractères pour SL(n,$mathbb C$), nous proposerons une définition de « variété de caractères pour une forme réelle » $G$ de SL(n,$mathbb C$), et nous vérifierons qu’elle permet bien l’étude des représentations de $Gamma$ à  valeurs dans $G$ à  conjugaison près.


La fonction volume sur les variétés de caractères

Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 16 octobre 2017 14:00-15:00 Lieu : Oratrice ou orateur : Antonin Guilloux Résumé :

Soit $M$ une variété de dimension 3 et $G$ son groupe fondamental. La recherche
d’éventuelles structures hyperboliques sur $M$ amène naturellement à  étudier l’espace
des représentations de $G$ dans SL(2,$mathbb C$) ou plutôt la variété des caractères
(espace des représentations modulo conjugaison).

On peut définir sur cette variété de caractère une fonction Volume, qui étend le
volume hyperbolique. Nous verrons comment l’étude des propriétés de cette
fonction renseigne sur la variété des caractères elle-même.