Exposés à venir
Résolution du problème d'approximation par dilatations de Erdős
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 3 avril 2025 14:15-15:15 Lieu : Salle Döblin Oratrice ou orateur : Youness Lamzouri (IECL) Résumé :Motivé par ses travaux et ceux de Behrend dans les années 30 concernant les ensembles primitifs d’entiers, Erdős conjectura en 1948 que si $\mathcal{A}$ est un ensemble dénombrable de réels $>1$, tel que $\limsup_{x\to +\infty} \frac{1}{\log x}\sum_{\alpha\leq x, \alpha\in \mathcal{A}}\frac{1}{\alpha} >0$, alors pour tout $\varepsilon>0$, il existe une infinité de triplets $(\alpha, \beta, n)\in \mathcal{A}^2\times \mathbb{N}$ tels que $\alpha\neq \beta$ et $|n\alpha-\beta|<\varepsilon.$ Très peu de temps avant sa mort en 1996, il avait offert 500$ pour la résolution de ce problème de nature diophantienne.
Dans cet exposé, je présenterai un travail récent, en collaboration avec Dimitris Koukoulopoulos et Jared Lichtman, où l’on démontre cette conjecture.
Grands ensembles évitant certaines configurations
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 24 avril 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Alexandre Bailleul (ENS Paris-Saclay) Résumé :En se laissant guider par l’exemple des ensembles de Sidon (ensembles de nombres dont les sommes de deux éléments sont uniques, très étudiés en combinatoire additive), je présenterai des résultats récents, en collaboration avec R. Riblet, où des techniques de théorie des ensembles permettent de construire des ensembles « grands » en certains sens (cardinalité, mesure ou dimension) tout en étant « épars » car évitant des configurations prescrites (pas de relation linéaire, ou ne contenant pas de parallélogramme, etc.). Des questions subtiles en lien avec l’axiome du choix seront évoquées.
Pseudogroups and geometric structures
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 15 mai 2025 14:15-15:15 Lieu : Salle de réunion Metz (ARC-027) Oratrice ou orateur : Francesco Cattafi (Würzburg) Résumé :This philosophy can be made precise at various levels of generality (depending on the definition of « geometric structure ») and using different tools/methods. In this talk I will present some aspects of a new framework, which includes previous formalisms (e.g. G-structures or Cartan geometries) and allows us to prove integrability theorems.
A main novelty of this point of view consists of the fact that it uncovers the (beautiful!) hidden structures behind Lie pseudogroups and geometric structures. Indeed, the relevant objects which make this approach work are Lie groupoids endowed with a multiplicative « PDE-structure », their principal actions, and the related Morita theory. Poisson geometry provides the guiding principle to understand those objects, which are directly inspired from, respectively, symplectic groupoids, principal Hamiltonian bundles, and symplectic Morita equivalence.
This is based on a forthcoming book written jointly with Luca Accornero, Marius Crainic and María Amelia Salazar.
A venir
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 15 mai 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Athanasios Sourmelidis (CNRS, Lille) Résumé :Antonio Miti – titre à venir
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 5 juin 2025 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Antonio Miti (Rome) Résumé :Archives
C'est quoi l'analogue du Théorème de Mà¼ntz-Szà¡sz pour un groupe de Lie?
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 17 octobre 2018 16:00-17:00 Lieu : Oratrice ou orateur : Ali Baklouti Résumé :La première partie de l’exposé consiste à rappeler le Théorème de Mà¼ntz-Szà¡sz sur la droite réelle, lié à l’approximation des fonctions continues sur un intervalle par des fonctions polynomiales. Ensuite je vais définir un analogue à ce théorème dans le cadre de certaines extensions compactes de groupes de Lie nilpotents.
Familles exhaustives et Idéaux primitifs d'une C*-algèbre produit croisé
Catégorie d’évènement : Groupe de travail Géométrie non commutative Date/heure : 11 octobre 2018 14:15-16:00 Lieu : Oratrice ou orateur : Mougel Jérémy Résumé :Je commencerai par quelques mots sur l’espace des idéaux primitifs d’une C*-algèbre. Puis, j’introduirai différentes familles de morphismes utiles pour caractériser le spectre des éléments d’une C*-algèbre, en particulier les familles exhaustives. Lorsqu’on veut montrer qu’une famille de morphismes est exhaustive, il est nécessaire de bien connaitre l’espace des idéaux primitifs. En m’appuyant sur les résultats de Williams, je donnerai une description de l’espace des idéaux primitifs lorsque la C*-algèbre est issue d’un produit croisé pour lequel le C* système dynamique associé a de bonnes propriétés topologiques. Grâce à cette description, on peut construire facilement une famille exhaustive.
Cliquez sur le lien "arXiv" pour accéder au programme.
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 4 octobre 2018 14:15-18:00 Lieu : Oratrice ou orateur : Journées Analyse et Physique Mathématique Résumé :Fredholm Groupoids and Layer Potentials on Conical Domains
Catégorie d’évènement : Groupe de travail Géométrie non commutative Date/heure : 27 septembre 2018 16:00-17:00 Lieu : Oratrice ou orateur : Yu Qiao Résumé :In this talk, I first review the method of layer potentials, with the emphasis on the double layer potential operator (also called Neumann-Poincar Ìe operator) associated to the Laplace operator and a domain. Then I show that layer potential groupoids for conical domains constructed in an earlier paper (Carvalho-Qiao, Central European J. Math., 2013) are Fredholm groupoids, which enables us to deal with many analysis problems on singular spaces in a unified treatment. As an application, we obtain Fredholm criteria for operators on layer potential groupoids. This is joint with Catarina Carvalho.
On a growth estimate of the resolvent norm
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 27 septembre 2018 14:15-15:15 Lieu : Oratrice ou orateur : Hans Konrad Knörr Résumé :In this talk I will present some recent results for the resolvent norm of linear operators and their implication for the pseudospectrum of matrices. In the presentation I restrict myself to matrices, even though most statements also hold, at least locally, for a certain class of closed linear operators on a separable Hilbert space. As the main theorem we have that for any point in the resolvent set there are directions in which the norm grows at least quadratically in the distance from this point. Besides others this directly implies the well-known fact that level sets of the resolvent norm cannot have interior points. Moreover, I will show how the main theorem can be used to construct a finite polygonal contour inside the pseudospectrum linking a given arbitrary point in the pseudospectrum to an eigenvalue of the matrix. This talk is based on joint work with H. Cornean, H. Garde and A. Jensen.
Groupoïdes de Lie apparaissant dans l'étude des variétés singulières (suite)
Catégorie d’évènement : Groupe de travail Géométrie non commutative Date/heure : 20 septembre 2018 14:15-15:15 Lieu : Oratrice ou orateur : Rémi Côme Résumé :La première partie de cet exposé constituera une introduction aux groupoïdes, en particulier ceux possédant une structure lisse : les groupoïdes de Lie. Nous verrons comment ceux-ci apparaissent naturellement dans l’étude des équations différentielles sur des variétés « singulières ». Je présenterai notamment l’exemple d’une variété possédant une singularité conique isolée, ainsi que le groupoïde qui lui est associé.
Groupoïdes de Lie apparaissant dans l'étude des variétés singulières
Catégorie d’évènement : Groupe de travail Géométrie non commutative Date/heure : 13 septembre 2018 16:00-17:00 Lieu : Oratrice ou orateur : Rémi Come Résumé :La première partie de cet exposé constituera une introduction aux groupoïdes, en particulier ceux possédant une structure lisse : les groupoïdes de Lie. Nous verrons comment ceux-ci apparaissent naturellement dans l’étude des équations différentielles sur des variétés « singulières ». Je présenterai notamment l’exemple d’une variété possédant une singularité conique isolée, ainsi que le groupoïde qui lui est associé.
Pour les détails voir la page de Tilmann Wurzbacher, accessible via le lien "arXiv".
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 6 septembre 2018 14:15-18:00 Lieu : Oratrice ou orateur : Atelier sur la géométrie multisymplectique et ses applications Résumé :Clifford quartic forms and its applications
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 28 juin 2018 15:45-16:45 Lieu : Oratrice ou orateur : Takeyoshi Kogiso Résumé :Clifford qaudratic forms (abbreviated by CQF) were introduced in [T. Kogiso and F. Sato, J. Math. Sci. , Univ. Tokyo, 23 (2016), 791–866] as examples of non-prehomogeous type plynomials which satisfy local functional equations. In this talk, I introduce the following applications and properties of CQFs. CQFs are counter examples of Etingof , Kahzdan and Polishachuk’s problem (2002) of homaloidal polynomials. LFE of polarization of CQF keeps non-prehomogeneity. Certain phenomena suggesting the relationship between CQF and some class of Clifford Klein forms introduced by Kobayashi and Yoshino.
Parallel transport in categorified principal bundles
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 28 juin 2018 14:15-15:15 Lieu : Oratrice ou orateur : Konrad Waldorf Résumé :Categorified principal bundles are bundles whose fibres are Lie groupoids, on which a monoidal Lie groupoid (« Lie 2-group ») acts. They are global, geometric representatives of Giraud’s non-abelian cohomology. I will talk about connections on categorified principal bundles; these realize the Breen-Messing differential refinement of non-abelian cohomology. I will explain a mechanism of parallel transport, which goes very nicely with the fibrewise Lie groupoid structure. For example, the parallel transport along a path is a Morita equivalence between the fibres over its end points.