Séminaires

Exposés à venir

Surfaces minimales et surfaces de Ricci

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 28 novembre 2024 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Benoît Daniel (IÉCL) Résumé :

Les surfaces minimales sont les surfaces qui sont points critiques de la fonctionnelle d’aire à bord fixé. Elles sont caractérisées par le fait que leur courbure moyenne est nulle. Un problème posé par Ricci est de déterminer quelles surfaces riemanniennes peuvent être immergées (localement) isométriquement comme surfaces minimales de l’espace euclidien de dimension 3. Ricci a donné une caractérisation dans le cas où la surface est à courbure strictement négative. A. et S. Moroianu ont donné une caractérisation complète sans cette hypothèse et ont introduit la notion de surface de Ricci. Nous verrons des généralisations de cette notion, nous intéresserons aux surfaces de Ricci généralisées compactes et verrons le lien avec les surfaces à courbure constante et singularités coniques. Il s’agit d’un travail en commun avec Yiming Zang.


Un crible minorant effectif pour les entiers friables

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 28 novembre 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Adrien Mounier (Aix-Marseille Université) Résumé :

Soient $\mathcal{A}$ un ensemble fini d’entiers naturels non-nuls et $y \geq 1$. Nous donnons une minoration effective du cardinal de l’ensemble $\{n\in\mathcal{A} ; p|n \Rightarrow p \leq y\}$ sous la condition d’une bonne connaissance du niveau de répartition de l’ensemble $\mathcal{A}$. Quelques conséquences seront ensuite abordées, dont une application aux valeurs friables de polynômes ou de formes binaires à coefficients entiers, puis une application aux entiers friables voisins.


Journée à l'honneur de David Vogan

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 5 décembre 2024 00:00-23:59 Lieu : Oratrice ou orateur : Résumé :

Une version effective du théorème des nombres premiers de Lu

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 5 décembre 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Vincent Gozé (Université du Littoral Côte d'Opale) Résumé :

Soit $\pi(x)$ le nombre de nombres premiers dans l’intervalle $[1,x]$. Nous savons depuis Euclide que $\pi(x)$ tend vers l’infini, mais à quelle vitesse ?  La réponse à cette question fut obtenue pour la première fois en 1896 par Jacques Hadamard et Charles-Jean de la Vallée Poussin qui démontrèrent, de manière indépendante, le théorème des nombres premiers: \[\pi(x)\sim \frac{x}{\log x}\quad(x\to \infty).\]
La démonstration de Hadamard et La Vallée Poussin utilise principalement les propriétés de la fonction zêta de Riemann et donc l’analyse complexe. Ce n’est qu’en 1949 qu’Erdős et Selberg publièrent indépendamment la première démonstration élémentaire (utilisant uniquement l’analyse réelle) du théorème des nombres premiers. Dans cet exposé, nous présenterons le développement historique des démonstrations élémentaires du théorème des nombres premiers puis nous donnerons une version effective du théorème des nombres premiers de Lu qui, à ce jour, donne le meilleur terme d’erreur en utilisant des méthodes élémentaires.


Pause pour arbre de Noël GNC à Orléans

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 12 décembre 2024 14:15-15:15 Lieu : Oratrice ou orateur : Résumé :

Sur une généralisation des puissances d'un entier (``powered numbers''). Application à un problème additif.

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 12 décembre 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Olivier Robert (Institut Camille Jordan) Résumé :

La notion de fonction puissance d’un nombre entier, introduite par Mazur (2000) fait intervenir le noyau (ou radical) d’un entier. Cette fonction lui  permet de définir une généralisation des puissances (« powered numbers »). Après avoir rappelé des résultats récents sur le noyau d’un entier, nous présenterons des résultats nouveaux sur la fonction de répartition des puissances généralisées, ainsi que sur un problème additif concernant la représentation d’un entier comme somme de puissances généralisées. Ce travail a été réalisé en collaboration avec J. Brüdern.


Pierre Bieliavksy -- titre à venir

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 13 février 2025 14:14-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Pierre Bieliavsky (Louvain-la-Neuve) Résumé :

Archives

Classical Dynamics From Self-Consistency Equations in Quantum Mechanics

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 19 avril 2018 14:15-15:15 Lieu : Oratrice ou orateur : Jean-Bernard Bru Résumé :

I will explain how equations of Classical Mechanics, defined from Poisson structures, can emerge from Quantum Mechanics. This is done via self-consistency equations, which in turn imply an extended quantum dynamics. This situation generically appears for quantum systems with long-range interactions, as in the so-called BCS theory of (conventional) superconductivity.


On the largest prime factors of consecutive integers

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 12 avril 2018 14:30-15:30 Lieu : Oratrice ou orateur : Xiangdong L༠Résumé :

https://dev-iecl.univ-lorraine.fr/Les-Seminaires/Theorie-Des-Nombres/wolfcms/seminaire.html


Représentations unitaires des supergroupes de Lie

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 11 avril 2018 14:15-15:15 Lieu : Oratrice ou orateur : Gijs M. Tuynman Résumé :

à€ l’aide d’exemples je discuterai la notion habituelle de super espace de Hilbert et représentation super unitaire et je montrerai que ces notions ne permettent pas de dire qu’en général une représentation régulière d’un super groupe de Lie est super unitaire. Par contre, en élargissant la notion de super espace de Hilbert (et en adaptant la définition de représentation super unitaire), je montrerai qu’on peut remédier la situation. Je ferai un maximum d’effort pour que l’exposé soit compréhensible pour les non-spécialistes (quitte à  que les spécialistes resteront un peu sur leur faim).


Prime lattice points in ovals

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 5 avril 2018 14:30-15:30 Lieu : Oratrice ou orateur : Bingrong Huang Résumé :

https://dev-iecl.univ-lorraine.fr/Les-Seminaires/Theorie-Des-Nombres/wolfcms/seminaire.html


Théorème de Lambert pour des espaces à  courbure constante

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 5 avril 2018 14:15-15:15 Lieu : Oratrice ou orateur : Alain Albouy Résumé :

J.-H. Lambert (Mulhouse 1728 – Berlin 1777) est un des fondateurs de la géométrie non euclidienne. Il a aussi découvert une propriété étrange et utile du mouvement képlérien dans un espace euclidien. Le temps requis pour atteindre un point B à  partir d’un point A avec une énergie donnée, sous l’attraction Newtonienne d’une masse située en un point fixe O, ne varie pas si l’on déplace continà»ment A et B de telle sorte que la distance AB et la somme OA+OB restent constantes. P. Serret (1827–1898) et W. Killing (1847–1923) ont introduit le problème de Kepler sur les espaces à  courbure constante et ont donné une liste impressionnante d’analogies avec le problème de Kepler habituel. Ici nous complétons cette liste en démontrant que le temps requis pour atteindre un point B à  partir d’un point A avec une énergie donnée, sous l’attraction d’une masse située en un point fixe O de l’espace courbe, avec une énergie donnée, ne varie pas quand on déplace A et B de telle sorte que d(A,B) et d(O,A)+d(O,B) restent constants, o๠d désigne la distance géodésique. Nous discuterons aussi le cas des espaces pseudo-riemanniens à  courbure constante. Nous utilisons essentiellement les formules bien connues du calcul variationnel que Hamilton a introduites en 1834, et une propriété simple du vecteur excentricité. Ce travail est en collaboration avec Zhao Lei, de l’Université d’Augsbourg.


Correlations of Fourier coefficients of cusp forms

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 29 mars 2018 14:30-15:30 Lieu : Oratrice ou orateur : L༠Guangshi Résumé :

https://dev-iecl.univ-lorraine.fr/Les-Seminaires/Theorie-Des-Nombres/wolfcms/seminaire.html


Invariant measures on affine grassmannians

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 29 mars 2018 14:15-15:15 Lieu : Oratrice ou orateur : Caroline Bruère Résumé :

In joint work with Yves Benoist, we study the action of the affine group $G$ of $mathbb{R}^d$ on the affine Grassmannian $X_{k,, d}$, that is, the set of affine $k$-spaces in $mathbb{R}^d$. When $G$ is endowed with a Zariski-dense probability measure, we give a criterion for the existence of an invariant probability measure. Such a measure, if it exists, is unique.


Local functional equations of homaloidal polynomials

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 27 mars 2018 16:15-17:15 Lieu : Oratrice ou orateur : Takeyoshi Kogiso Résumé :

An identity that relates the Fourier transform of a complex power of homogeneous polynomial functions on a real vector space with a complex power of homogenous polynomial functions on the dual vector space is called a local functional equation. A rich source of polynomials satisfying local functional equations is the theory of prehomogeneous vector spaces. Almost all known examples of local functional equations are of this type. However recently local functional equations of non- prehomogeneous type are found. In this talk we present new examples of non-prehomogeneous polynomials satisfying a local functional equation. More precisely we prove a local functional equation for the polarization of an arbitrary homaloidal polynomial, and calculate the associated b-function identities explicitly.


http://sl2r.iecl.univ-lorraine.fr/

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 22 mars 2018 00:00-00:00 Lieu : Oratrice ou orateur : PAS DE SÉMINAIRE: JOURNÉES SL2R à€ STRASBOURG Résumé :

Quelques résultats récents autour de la méthode de van der Corput pour les sommes d'exponentielles

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 15 mars 2018 14:30-15:30 Lieu : Oratrice ou orateur : Olivier Robert Résumé :

https://dev-iecl.univ-lorraine.fr/Les-Seminaires/Theorie-Des-Nombres/wolfcms/seminaire.html