Séminaires

Exposés à venir

Résolution du problème d'approximation par dilatations de Erdős

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 3 avril 2025 14:15-15:15 Lieu : Salle Döblin Oratrice ou orateur : Youness Lamzouri (IECL) Résumé :

Motivé par ses travaux et ceux de Behrend dans les années 30 concernant les ensembles primitifs d’entiers, Erdős conjectura en 1948 que si $\mathcal{A}$ est un ensemble dénombrable de réels $>1$, tel que $\limsup_{x\to +\infty} \frac{1}{\log x}\sum_{\alpha\leq x, \alpha\in \mathcal{A}}\frac{1}{\alpha} >0$, alors pour tout $\varepsilon>0$, il existe une infinité de triplets $(\alpha, \beta, n)\in \mathcal{A}^2\times \mathbb{N}$ tels que $\alpha\neq \beta$ et $|n\alpha-\beta|<\varepsilon.$ Très peu de temps avant sa mort en 1996, il avait offert 500$ pour la résolution de ce problème de nature diophantienne.

Dans cet exposé, je présenterai un travail récent, en collaboration avec Dimitris Koukoulopoulos et Jared Lichtman, où l’on démontre cette conjecture.


Grands ensembles évitant certaines configurations

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 24 avril 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Alexandre Bailleul (ENS Paris-Saclay) Résumé :

En se laissant guider par l’exemple des ensembles de Sidon (ensembles de nombres dont les sommes de deux éléments sont uniques, très étudiés en combinatoire additive), je présenterai des résultats récents, en collaboration avec R. Riblet, où des techniques de théorie des ensembles permettent de construire des ensembles « grands » en certains sens (cardinalité, mesure ou dimension) tout en étant « épars » car évitant des configurations prescrites (pas de relation linéaire, ou ne contenant pas de parallélogramme, etc.). Des questions subtiles en lien avec l’axiome du choix seront évoquées.


Pseudogroups and geometric structures

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 15 mai 2025 14:15-15:15 Lieu : Salle de réunion Metz (ARC-027) Oratrice ou orateur : Francesco Cattafi (Würzburg) Résumé :
The space of (local) symmetries of a given geometric structure has the natural structure of a Lie (pseudo)group. Conversely, geometric structures admitting a local model can be described via the pseudogroup of symmetries of such local model.

This philosophy can be made precise at various levels of generality (depending on the definition of « geometric structure ») and using different tools/methods. In this talk I will present some aspects of a new framework, which includes previous formalisms (e.g. G-structures or Cartan geometries) and allows us to prove integrability theorems.

A main novelty of this point of view consists of the fact that it uncovers the (beautiful!) hidden structures behind Lie pseudogroups and geometric structures. Indeed, the relevant objects which make this approach work are Lie groupoids endowed with a multiplicative « PDE-structure », their principal actions, and the related Morita theory. Poisson geometry provides the guiding principle to understand those objects, which are directly inspired from, respectively, symplectic groupoids, principal Hamiltonian bundles, and symplectic Morita equivalence.

This is based on a forthcoming book written jointly with Luca Accornero, Marius Crainic and María Amelia Salazar.


A venir

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 15 mai 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Athanasios Sourmelidis (CNRS, Lille) Résumé :

Antonio Miti – titre à venir

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 5 juin 2025 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Antonio Miti (Rome) Résumé :

Archives

Regular sequences via a paradigmatic example

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 17 mai 2018 14:30-15:30 Lieu : Oratrice ou orateur : Michael Coons Résumé :

https://dev-iecl.univ-lorraine.fr/Les-Seminaires/Theorie-Des-Nombres/wolfcms/seminaire.html


Application de la géométrie de dimension infinie à  la reconnaissance de formes

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 17 mai 2018 14:15-15:15 Lieu : Oratrice ou orateur : Barbara Tumpach Résumé :

Dans cet exposé nous donnerons un apercu des techniques de géométrie riemannianne de dimension infinie qui sont utilisées dans le domaine de la théorie de l’information et plus particulièrement en analyse de formes (Shape Analysis). Dans la première partie nous rappelerons les notions géométriques utilisées, et nous mentionnerons les écueils dus à  la dimension infinie. Dans une deuxième partie nous nous intéresserons à  une famille de métriques riemanniennes sur l’espace des courbes simples du plan connue sous le nom de métriques élastiques. Suivre une géodésique pour ces métriques riemanniennes c’est interpoler entre deux contours du plan, par exemple entre deux poses d’une danseuse dans un film d’animation. Une de ces métriques a de remarquables propriétés géométriques qui simplifient grandement la recherche de géodésiques. Nous verrons en particulier comment les géodésiques pour cette métrique particulière sont reliées à  la géométrie de la sphère unité d’un espace de Hilbert.


ATTENTION! Annulé pour cause de grève à  la SNCF.

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 19 avril 2018 15:45-16:45 Lieu : Oratrice ou orateur : Zied Ammari Résumé :

Résumé


Classical Dynamics From Self-Consistency Equations in Quantum Mechanics

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 19 avril 2018 14:15-15:15 Lieu : Oratrice ou orateur : Jean-Bernard Bru Résumé :

I will explain how equations of Classical Mechanics, defined from Poisson structures, can emerge from Quantum Mechanics. This is done via self-consistency equations, which in turn imply an extended quantum dynamics. This situation generically appears for quantum systems with long-range interactions, as in the so-called BCS theory of (conventional) superconductivity.


On the largest prime factors of consecutive integers

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 12 avril 2018 14:30-15:30 Lieu : Oratrice ou orateur : Xiangdong L༠Résumé :

https://dev-iecl.univ-lorraine.fr/Les-Seminaires/Theorie-Des-Nombres/wolfcms/seminaire.html


Représentations unitaires des supergroupes de Lie

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 11 avril 2018 14:15-15:15 Lieu : Oratrice ou orateur : Gijs M. Tuynman Résumé :

à€ l’aide d’exemples je discuterai la notion habituelle de super espace de Hilbert et représentation super unitaire et je montrerai que ces notions ne permettent pas de dire qu’en général une représentation régulière d’un super groupe de Lie est super unitaire. Par contre, en élargissant la notion de super espace de Hilbert (et en adaptant la définition de représentation super unitaire), je montrerai qu’on peut remédier la situation. Je ferai un maximum d’effort pour que l’exposé soit compréhensible pour les non-spécialistes (quitte à  que les spécialistes resteront un peu sur leur faim).


Prime lattice points in ovals

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 5 avril 2018 14:30-15:30 Lieu : Oratrice ou orateur : Bingrong Huang Résumé :

https://dev-iecl.univ-lorraine.fr/Les-Seminaires/Theorie-Des-Nombres/wolfcms/seminaire.html


Théorème de Lambert pour des espaces à  courbure constante

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 5 avril 2018 14:15-15:15 Lieu : Oratrice ou orateur : Alain Albouy Résumé :

J.-H. Lambert (Mulhouse 1728 – Berlin 1777) est un des fondateurs de la géométrie non euclidienne. Il a aussi découvert une propriété étrange et utile du mouvement képlérien dans un espace euclidien. Le temps requis pour atteindre un point B à  partir d’un point A avec une énergie donnée, sous l’attraction Newtonienne d’une masse située en un point fixe O, ne varie pas si l’on déplace continà»ment A et B de telle sorte que la distance AB et la somme OA+OB restent constantes. P. Serret (1827–1898) et W. Killing (1847–1923) ont introduit le problème de Kepler sur les espaces à  courbure constante et ont donné une liste impressionnante d’analogies avec le problème de Kepler habituel. Ici nous complétons cette liste en démontrant que le temps requis pour atteindre un point B à  partir d’un point A avec une énergie donnée, sous l’attraction d’une masse située en un point fixe O de l’espace courbe, avec une énergie donnée, ne varie pas quand on déplace A et B de telle sorte que d(A,B) et d(O,A)+d(O,B) restent constants, o๠d désigne la distance géodésique. Nous discuterons aussi le cas des espaces pseudo-riemanniens à  courbure constante. Nous utilisons essentiellement les formules bien connues du calcul variationnel que Hamilton a introduites en 1834, et une propriété simple du vecteur excentricité. Ce travail est en collaboration avec Zhao Lei, de l’Université d’Augsbourg.


Correlations of Fourier coefficients of cusp forms

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 29 mars 2018 14:30-15:30 Lieu : Oratrice ou orateur : L༠Guangshi Résumé :

https://dev-iecl.univ-lorraine.fr/Les-Seminaires/Theorie-Des-Nombres/wolfcms/seminaire.html


Invariant measures on affine grassmannians

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 29 mars 2018 14:15-15:15 Lieu : Oratrice ou orateur : Caroline Bruère Résumé :

In joint work with Yves Benoist, we study the action of the affine group $G$ of $mathbb{R}^d$ on the affine Grassmannian $X_{k,, d}$, that is, the set of affine $k$-spaces in $mathbb{R}^d$. When $G$ is endowed with a Zariski-dense probability measure, we give a criterion for the existence of an invariant probability measure. Such a measure, if it exists, is unique.