Séminaire Probabilités et Statistique

Exposés à venir

Abonnement iCal

Archives

Maximum de vraisemblance composite pour un champ aléatoire de Brown-Resnick en infill

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 28 mars 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Nicolas Chenavier (Université du Littoral Côte d'Opale) Résumé :

Dans cet exposé, on s’intéresse à un certain type de champ aléatoire: le champ de Brown-Resnick. La loi de ce dernier est décrite par deux paramètres: l’un d’échelle, l’autre de Hurst. On suppose que le champ est observé dans une fenêtre fixée en un nombre fini de sites. Les sites sont donnés par la réalisation d’un processus ponctuel de Poisson. Estimer les paramètres par maximum de vraisemblance est en pratique impossible car les lois fini-dimensionnelles ne peuvent être calculées de façon efficace. Pour y remédier, nous considérons les estimateurs par maximum de vraisemblance composite en retenant comme pairs les pairs de points qui sont voisins dans la triangulation de Delaunay sous-jacent et comme triplets les triplets qui sont sommets d’un triangle de Delaunay. Les résultats sont des théorèmes limites sur ces estimateurs, lorsque l’intensité du processus de Poison tend vers l’infini. Travail joint avec Christian Y. Robert.


Exposants critiques pour le champ libre gaussien sur le système de câbles en dimensions intermédiaires.

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 21 mars 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Alexis Prevost (Université de Genève) Résumé :

La transition de phase associée à un modèle de percolation peut être quantifiée à l’aide d’un certain nombre de constantes, appelées exposants critiques, qui décrivent la vitesse à laquelle certaines quantités décroissent au voisinage du point critique. J’expliquerai comment calculer certains de ces exposants critiques quand le modèle de percolation est le champ libre gaussien sur le système de câbles en dimension trois ou quatre.


A construction of cylindrical distribution based on the normal distribution and its regression modeling

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 14 mars 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Toshihiro Abe (Hosei University) Résumé :

Cylindrical distributions are joint distributions of a circular variable and a linear variable, where the circular variable affects the linear variable. In this paper, we consider a class of cylindrical distributions based on the normal distribution, which have normal and angular conditional and marginal distributions. The distribution based on the normal distribution has the advantages of easy random number generation and simple Fisher information matrix. We also consider a regression model using the cylindrical distribution. Examples of estimation will be given for real data, and a new methodology of data analysis using the cylinder model will be given. Furthermore, we also discuss some potential extensions of the cylindrical distribution.


Systems of FBSDEs driven by Brownian Motion and Numerical Simulation of Fluid Dynamics

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 14 mars 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Hernán A. Mardones González (Universidad de la Frontera, Chile) Résumé :

The systems of forward-backward stochastic differential equations driven by Brownian motion (FBSDEs for short) help us to model diffusion processes related to phenomena that involve environment perturbations. The drift coefficients constitute the descriptive part of a non-random ambient, while the Wiener processes permit us to describe the random perturbations involved into the dynamics through the diffusion terms. The systems of FBSDEs motion are linked to the nonlinear partial differential equations (PDEs) through the Feyman-Kac formulae. Therefore, the deterministic solutions can be obtained by probabilistic representations involving the stochastic processes that solve the FBSDEs.

During this talk, we deal with the numerical simulation of systems of stochastic particles ruled by FBSDEs associated with nonlinear PDEs appearing in fluid dynamics. To make this, we discretize locally in time the stochastic equations, and then we consider integration schemes of Euler-Maruyama type, together with the optimal quantization of the involved Wiener increments as an alternative to the Monte-Carlo simulation. Then we approximate the related conditional expectations over each temporal-spatial node of a computational domain with uniform discretization steps in time and space. Numerical results are presented to the case of analytic spatially-periodic exact solutions of the incompressible Navier-Stokes equations, in particular, a two-dimensional Taylor-Green vortex and three-dimensional Beltrami flows, for example an Arnold-Beltrami-Childress flow. The simulation algorithms follow from a completely probabilistic approach.


Comportement en temps long des équations de Cucker-Smale et inférence de structure sociale

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 22 février 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Adrien Cotil Résumé :

La compréhension de l’auto-organisation d’un système, c’est-à-dire sa capacité à faire émerger des comportements collectifs sans intervention extérieure, est à la base du développement de nombreux domaines scientifiques, aussi bien en physique, en informatique, en mathématiques, en biologie ou en sociologie. Au sein de ce domaine se trouve l’étude des modèles de consensus, permettant de décrire comment des agents s’échangent de l’information afin d’aboutir à une décision commune. Dans cet exposé, nous aborderons un modèle de consensus largement étudié dans la littérature : le modèle de Cucker-Smale. Ce dernier décrit des individus qui se déplacent dans l’espace et qui s’alignent les uns sur les autres. Il suppose que la force avec laquelle les individus s’alignent entre eux dépend à la fois de la distance qui les sépare et d’un paramètres A(i,j) qui décrit intrinsèquement comment un individu i s’aligne sur un individu j. L’une des questions principales est la détermination de conditions qui assurent que les individus tendent tous à se déplacer dans la même direction à la même vitesse, appelé phénomène de flocking dans ce contexte. En exploitant la dualité entre les équations de Cucker-Smale et les équations de Kolomogorov, nous prouvons que le flocking est équivalent à la convergence en variation total d’un certain processus de saut markovien inhomogène en temps.  Nous prouvons ensuite cette convergence en utilisant des techniques de type Doeblin, permettant de dériver de nouvelles conditions de flocking plus fines que celles connues pour ce modèle. Enfin, nous traiterons la question de l’apprentissage du paramètre A(i,j) à partir de données de déplacement d’animaux, permettant d’obtenir des informations sur la manière dont ceux-ci se comportent socialement les uns avec les autres.


Gaussian random fields on Riemannian manifolds: Applications to Geostatistics

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 15 février 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mike Pereira (Université Paris Sciences & Lettres) Résumé :

Many applications in spatial and spatio-temporal statistics require data to be modeled by Gaussian processes on non-Euclidean domains, or with non-stationary properties. Using such models generally comes at the price of a drastic increase in operational costs (computational and storage-wise), rendering them hard to apply to large datasets. In this talk, we propose a solution to this problem, which relies on the definition of a class of random fields on Riemannian manifolds. These fields extend ongoing work that has been done to leverage a characterization of the random fields classically used in Geostatistics as solutions of stochastic partial differential equations. The discretization of these generalized random fields, undertaken using a finite element approach, then provides an explicit characterization that is leveraged to solve the scalability problem. Indeed, matrix-free algorithms, in the sense that they do not require to build and store any covariance (or precision) matrix, are derived to tackle for instance the simulation of large Gaussian fields with given covariance properties, even in the non-stationary setting or on surfaces.


Mouvement brownien réfléchi dans un cône : étude du cas transient

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 8 février 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Sandro Franceschi Résumé :

La littérature consacrée au mouvement brownien réfléchi dans un cône bidimensionnel est la plupart du temps consacrée à l’étude de sa distribution stationnaire dans le cas récurrent. Dans cet exposé, nous intéresserons en revanche au cas transient pour étudier les fonctions de Green de ce processus et leurs asymptotiques. Ceci nous amènera à considérer la frontière de Martin associée et les fonctions harmoniques satisfaisant des conditions de Neumann obliques sur les bords du cône. Pour certains modèles, nous illustrerons cela en étudiant la probabilité d’évasion du processus le long d’un axe et sa probabilité d’absorption au sommet du cône.

Pour établir nos résultats, nous utilisons des méthodes analytiques historiquement développées pour étudier les marches aléatoires dans le quadrant. Nous établissons des équations fonctionnelles satisfaites par les transformées de Laplace des fonctions de Green. Grâce à la théorie des problèmes frontières (de Riemann et Carleman), il est possible de déterminer des formules explicites pour ces transformées de Laplace impliquant des fonctions hypergéométriques. La méthode du point col et des lemmes de transfert taubériens permettent d’obtenir des résultats asymptotiques et d’établir la frontière de Martin.


Maxima of a random model of the Riemann zeta function on longer intervals (and branching random walks)

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 1 février 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lisa Hartung Résumé :
We study the maximum of a random model for the Riemann zeta function (on the critical line at height T) on the interval $[-(\log T)^\theta,(\log T)^\theta]$, where $ \theta= = (\log \log T)^{-a}$, with $0<a<1$.  We obtain the leading order as well as the logarithmic correction of the maximum.
As it turns out, a good toy model is a collection of independent BRWs, where the number of independent copies depends on $\theta$. In this talk I will try to motivate our results by mainly focusing on this toy model. The talk is based on joint work in progress with L.-P. Arguin and G. Dubach.

(Séminaire commun avec l’équipe ATN.)


Formule d'Euler-Maclaurin et intégrales itérées généralisées

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 25 janvier 2024 10:45-11:45 Lieu : Oratrice ou orateur : Carlo Bellingeri Résumé :

Considérée comme l’une des identités clés de l’analyse classique, la formule d’Euler-McLaurin est l’un des outils standard pour relier les sommes et les intégrales, avec des applications remarquables dans de nombreux domaines des mathématiques, bien que peu utilisée en analyse stochastique. Dans cet exposé, nous montrerons comment, en introduisant de nouvelles variantes des intégrales itérées d’un chemin et un simple problème variationnel, nous pouvons généraliser cette identité dans le contexte de l’intégration de Riemann Stieltjes.

(Le séminaire aura lieu en amphi 3.)


Cycles éco-évolutifs dans des communautés proies-prédateurs

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 18 janvier 2024 10:45-11:45 Lieu : Salle Döblin Oratrice ou orateur : Manon Costa (Université Paul Sabatier) Résumé :

Dans cet exposé, nous présentons et étudions un modèle pour deux populations avec une interaction prédateur-proie, où chaque population est composée de deux types d’individus, notés 0 et 1, de sorte que les prédateurs d’un type donné prospèrent en présence de proies similaires, tandis que les proies d’un type donné ont plus de chances de survivre en présence de prédateurs du type différent.
Nous considérons une limite dans une grande population avec des mutations dans à une échelle intermédiaire, c’est à dire que le taux de mutation individuel disparaît tandis que le taux de mutation total tend vers l’infini. Nous prouvons qu’en fonction des paramètres du modèle, différents scénarios peuvent se produire : invasion successive de proies et de prédateurs conduisant à la coexistence de quatre types, ou invasion successive de proies dans une population de prédateurs résidents conduisant soit à l’extinction des proies, soit à la coexistence de tous les types, …


1 2 3 4 5 6 7 8 9 10 11 12