Exposés à venir
Archives
Hyperbolic sine-Gordon model beyond the first threshold
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 14 novembre 2024 10:45-10:45 Lieu : Salle Döblin Oratrice ou orateur : Younes Zine Résumé :Spatio-Temporal Statistical Modelling for Environmental and Public Health Applications
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 7 novembre 2024 10:45-10:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : André Victor Ribeiro Amaral (Imperial College London) Résumé :The increasing availability of temporal and geo-coded data underscores the importance of spatio-temporal statistical modelling in tackling complex issues across various real-world settings. In the first part of this talk, we will briefly showcase novel spatio-temporal statistical methods developed to model various types of data defined both in space and time (e.g., time-series, point patterns, lattice data, geostatistical data, etc.), with a focus on applications in environmental and public health domains. In the second part, we will (I) delve into the modelling of trajectory (or path) data and (II) explore the details of a statistical method for addressing spatially varying preferential sampling when modelling geostatistical data. Specifically, we will account for preferential sampling by including a spatially varying coefficient that describes the dependence strength between the process that models the sampling locations and the corresponding latent field. We achieve this by approximating the preferentiality component with a set of basis functions, with the corresponding coefficients estimated using the integrated nested Laplace approximation (INLA) method. This approach allows for efficient inference with a low computation burden.
Analysis of point patterns observer with errors
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 17 octobre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Aila Särkkä (Chalmers University, Sweden) Résumé :On the nonconvexity of push-forward constraints and its consequences in machine learning
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 10 octobre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lucas De Lara (IECL) Résumé :The push-forward operation enables one to redistribute a probability measure through a deterministic map. It plays a key role in statistics and optimization: many learning problems (notably from optimal transport, generative modeling, and algorithmic fairness) include constraints or penalties framed as push-forward conditions on the model. However, the literature lacks general theoretical insights on the (non)convexity of such constraints and its consequences on the associated learning problems. The presented work aims at filling this gap. In a first part, we provide a range of sufficient and necessary conditions for the (non)convexity of two sets of functions: the maps transporting one probability measure to another; the maps inducing equal output distributions across distinct probability measures. This highlights that for most probability measures, these push-forward constraints are not convex. In a second time, we show how this result implies critical limitations on the design of convex optimization problems for learning generative models or group-fair predictors. This work will hopefully help researchers and practitioners have a better understanding of the critical impact of push-forward conditions onto convexity.
Couplages de processus stochastiques en géométrie sous-riemannienne
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 3 octobre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Magalie Bénéfice (IECL) Résumé :On s’intéresse à l’étude de couplages des mouvements browniens sous-elliptiques sur plusieurs variétés sous-riemaniennes: les groupes de Carnot libres d’ordre 2, incluant le groupe d’Heisenberg, ainsi que les groupes de matrices $SU(2)$ et $SL(2,\mathbb{R})$. Après une rapide introduction aux structures sous-Riemannienne, nous proposerons plusieurs méthodes explicites de couplages markoviens ou non markoviens. En particulier ces constructions mènent à des estimées du taux de couplage dont on déduit des inégalités pour le semi-groupe de la chaleur et pour les fonctions harmoniques que nous expliciterons.
Pour finir nous présenterons un nouveau modèle de couplage non markovien « en un coup » sur tous les groupes de Carnot libres de profondeur 2. Il permet notamment d’obtenir des relations similaires à la formule de Bismut-Elworthy-Li pour les gradients de semi-groupes via l’étude d’un changement de probabilité sur l’espace des vecteurs Gaussiens.
Un flot de gradient sur l'espace des contrôles avec condition initiale irrégulière
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 26 septembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Paul Gassiat (Paris Dauphine) Résumé :On considère un problème de contrôle consistant à trouver une trajectoire reliant un point initial x à un point cible y, le système se déplaçant uniquement dans certaines directions admissibles. On suppose que les champs de vecteurs correspondants satisfont la condition de Hörmander, de telle sorte que par un théorème classique (Chow-Rashevskii), il existe des trajectoires qui satisfont cette contrainte. Une manière naturelle d’essayer de résoudre ce problème est via un flot de gradient sur l’espace des contrôles. Cependant, la dynamique correspondante peut avoir des point-selles, et pour obtenir un résultat de convergence il faut donc faire des hypothèses (par exemple probabilistes) sur la condition initiale. Dans ce travail, nous considérons le cas où cette initialisation est irrégulière, que nous formulons grâce à la théorie des trajectoires rugueuses de Lyons. Dans des cas simples, on prouve que le flot de gradient converge vers une solution, si la condition initiale est une trajectoire d’un mouvement Brownien (ou d’un processus de régularité plus faible). La preuve combine des idées de calcul de Malliavin avec des inégalités de Łojasiewicz. Une motivation possible pour nos travaux vient de l’entraînement de réseaux de neurones résiduels profonds, dans un régime où le nombre de paramètres par couche est fixé, et la dimension du vecteur de données est élevée. Il s’agit d’un travail en collaboration avec Florin Suciu (Paris Dauphine).
The multivariate fractional Ornstein-Uhlenbeck process
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 26 septembre 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Paolo Pigato (Roma) Résumé :Réunion d'équipe et workshop L2
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 19 septembre 2024 - 20 septembre 2024 00:00-23:59 Lieu : Salle de conférences Nancy Oratrice ou orateur : Simon Bartolacci, Victor Dubach, Tianxiao Guo, Aline Kurtzmann, Ivan Nourdin et Pierre Perruchaud Résumé :jeudi 19 septembre, 10:45 réunion de rentrée de l’équipe PS
du jeudi 19 septembre, 16:00, au vendredi 20, 11:30 : L² Workshop in Probability and Statistics à Nancy, plus d’infos
Testing normality of many samples
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 4 juillet 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Maria Dolorès Jimenez Gamero (Séville) Résumé :We study the problem of simultaneously testing that each of k independent samples come from a normal population. The means and variances of those populations may differ. The proposed procedures are based on the BHEP test and they allow k to increase, which can be even larger than the sample sizes.
Deep neural network approximations for high dimensional Kolmogorov PDEs
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 30 mai 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Diyora Salimova Résumé :Most of the numerical approximation methods for PDEs in the scientific literature suffer from the so-called curse of dimensionality (CoD) in the sense that the number of computational operations and/or the number of parameters employed in the corresponding approximation scheme grows exponentially in the PDE dimension and/or the reciprocal of the desired approximation precision. In recent years, certain deep learning-based approximation methods for PDEs have been proposed and various numerical simulations for such methods suggest that they might have the capacity to indeed overcome the CoD in the sense that the number of real parameters used to describe the approximating neural networks grows at most polynomially in both the PDE dimension and the reciprocal of the prescribed approximation accuracy. In this talk, I will show some theoretical results which state that this is indeed the case for suitable Kolmogorov PDEs.