Exposés à venir
Archives
Un flot de gradient sur l'espace des contrôles avec condition initiale irrégulière
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 26 septembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Paul Gassiat (Paris Dauphine) Résumé :On considère un problème de contrôle consistant à trouver une trajectoire reliant un point initial x à un point cible y, le système se déplaçant uniquement dans certaines directions admissibles. On suppose que les champs de vecteurs correspondants satisfont la condition de Hörmander, de telle sorte que par un théorème classique (Chow-Rashevskii), il existe des trajectoires qui satisfont cette contrainte. Une manière naturelle d’essayer de résoudre ce problème est via un flot de gradient sur l’espace des contrôles. Cependant, la dynamique correspondante peut avoir des point-selles, et pour obtenir un résultat de convergence il faut donc faire des hypothèses (par exemple probabilistes) sur la condition initiale. Dans ce travail, nous considérons le cas où cette initialisation est irrégulière, que nous formulons grâce à la théorie des trajectoires rugueuses de Lyons. Dans des cas simples, on prouve que le flot de gradient converge vers une solution, si la condition initiale est une trajectoire d’un mouvement Brownien (ou d’un processus de régularité plus faible). La preuve combine des idées de calcul de Malliavin avec des inégalités de Łojasiewicz. Une motivation possible pour nos travaux vient de l’entraînement de réseaux de neurones résiduels profonds, dans un régime où le nombre de paramètres par couche est fixé, et la dimension du vecteur de données est élevée. Il s’agit d’un travail en collaboration avec Florin Suciu (Paris Dauphine).
The multivariate fractional Ornstein-Uhlenbeck process
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 26 septembre 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Paolo Pigato (Roma) Résumé :Réunion d'équipe et workshop L2
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 19 septembre 2024 - 20 septembre 2024 00:00-23:59 Lieu : Salle de conférences Nancy Oratrice ou orateur : Simon Bartolacci, Victor Dubach, Tianxiao Guo, Aline Kurtzmann, Ivan Nourdin et Pierre Perruchaud Résumé :jeudi 19 septembre, 10:45 réunion de rentrée de l’équipe PS
du jeudi 19 septembre, 16:00, au vendredi 20, 11:30 : L² Workshop in Probability and Statistics à Nancy, plus d’infos
Testing normality of many samples
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 4 juillet 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Maria Dolorès Jimenez Gamero (Séville) Résumé :We study the problem of simultaneously testing that each of k independent samples come from a normal population. The means and variances of those populations may differ. The proposed procedures are based on the BHEP test and they allow k to increase, which can be even larger than the sample sizes.
Deep neural network approximations for high dimensional Kolmogorov PDEs
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 30 mai 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Diyora Salimova Résumé :Most of the numerical approximation methods for PDEs in the scientific literature suffer from the so-called curse of dimensionality (CoD) in the sense that the number of computational operations and/or the number of parameters employed in the corresponding approximation scheme grows exponentially in the PDE dimension and/or the reciprocal of the desired approximation precision. In recent years, certain deep learning-based approximation methods for PDEs have been proposed and various numerical simulations for such methods suggest that they might have the capacity to indeed overcome the CoD in the sense that the number of real parameters used to describe the approximating neural networks grows at most polynomially in both the PDE dimension and the reciprocal of the prescribed approximation accuracy. In this talk, I will show some theoretical results which state that this is indeed the case for suitable Kolmogorov PDEs.
Graphes à décomposition modulaire prescrite, convergence au sens des graphons et nombre de sous-graphe induits
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 23 mai 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Théo Lenoir (Polytechnique) Résumé :L’objectif de cet exposé est de montrer comment se comportent certains types de modèles de graphes en particulier des modèles de graphes à motifs exclus. Pour cela nous introduirons la décomposition modulaire, un outil relativement connu en algorithmique, mais dont l’étude d’un point de vue probabiliste a commencé très récemment. Nous verrons alors comment pour une large classe de modèles définies par diverses contraintes sur la décomposition modulaire, on arrive à connaître la densité de chaque graphe comme sous-graphe induit. Ce résultat implique une convergence au sens des « graphons » qui peut être vue comme une sorte de convergence des matrices d’adjacences. On a la convergence d’un graphe de taille n vers un graphe « continu » qui est appelé cographon Brownien et peut être construit à partir d’une excursion Brownienne.
Quelques limites d'échelle pour le processus d'exclusion facilité en 1d
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 16 mai 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Marielle Simon (Université Lyon 1) Résumé :Le but de cet exposé est de présenter quelques résultats récents pour le processus d’exclusion facilité en une dimension.
Ce modèle de gaz sur réseau stochastique est soumis à de fortes contraintes cinétiques qui créent une transition de phase continue vers un état absorbant à une valeur critique de la densité des particules. Si la dynamique microscopique est symétrique, son comportement macroscopique (avec conditions aux limites périodiques et dans l’échelle de temps diffusive), est régi par une EDP non linéaire appartenant aux problèmes à frontières libres (ou problèmes de Stefan). L’un des ingrédients majeurs est de montrer que le système atteint la composante « ergodique » en un temps sous-diffusif. Dans le cas asymétrique, la densité empirique converge vers l’unique solution entropique d’un problème hyperbolique de Stefan. Tous ces résultats reposent, dans une certaine mesure, sur un argument de mapping avec un processus de type zero-range, qui ne peut pas être utilisé en dimension plus grande que 1.
D’après des travaux en collaboration avec O. Blondel, H. Da Cunha, C. Erignoux, M. Sasada et L. Zhao.
Limite d'échelle pour la limite locale de l'arbre couvrant minimal du graphe complet
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 18 avril 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Delphin Sénizergues Résumé :Pour un graphe connexe donné muni de poids distincts sur les arêtes, il existe un unique arbre couvrant dont la somme des poids des arêtes est minimale: on l’appelle l’arbre couvrant minimal. On s’intéresse aux propriétés asymptotiques, pour n grand, de l’arbre couvrant minimal défini à partir du graphe complet à n sommets muni de poids i.i.d. sur les arêtes.
Un résultat de convergence locale nous décrit la structure de cet objet autour d’un point typique à l’aide d’un arbre discret infini. Dans un travail avec Omer Angel, nous montrons que cet arbre infini admet une limite d’échelle: lorsqu’on fait tendre les longueurs des arêtes de cet arbre vers 0, on voit apparaître un arbre continu, dont on peut donner une construction explicite.
Je présenterai les objets mentionnés et expliquerai les grandes lignes de la preuve de la convergence du discret vers le continu.
On nonparametric estimation of the interaction function in particle system models
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 11 avril 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mark Podolskij Résumé :This paper delves into a challenging problem of nonparametric estimation for the interaction function within diffusion-type particle system models. We introduce two estimation methods based upon an empirical risk minimization. Our study encompasses an analysis of the stochastic and approximation errors associated with both procedures, along with an examination of certain minimax lower bounds. In particular, for the first method we show that there is a natural metric under which the corresponding estimation error of the interaction function converges to zero with parametric rate which is minimax optimal. This result is rather surprising given the complexity of the underlying estimation problem and rather large class of interaction functions for which the above parametric rate holds.
Improved linear regression prediction by transfer learning
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 4 avril 2024 10:45-11:45 Lieu : Salle Döblin Oratrice ou orateur : Jairo Cugliari (Université Lyon 2) Résumé :L’apprentissage par transfert (transfert learning) vise à réutiliser les connaissances d’un ensemble de données source vers un ensemble de données cible similaire. Alors que plusieurs études abordent le problème de quoi ou comment transférer, la question très importante de quand le faire reste principalement sans réponse, surtout d’un point de vue théorique pour les problèmes de régression.
Dans l’exposé je présenterai le cadre général de l’apprentissage par transfert. Puis, je détaillerai un nouveau cadre théorique pour le problème du transfert de paramètres pour le modèle linéaire… Il est démontré que la qualité du transfert pour un nouveau vecteur d’entrée dépend de sa représentation dans une base propre impliquant les paramètres du problème. De plus, un test statistique est construit pour prédire si un modèle affiné (fine tuned) a un risque quadratique de prédiction inférieur au modèle cible de base pour un échantillon non observé. L’efficacité du test est illustrée sur des données synthétiques ainsi que des données réelles de consommation d’électricité.
David Obst, Badih Ghattas, Sandra Claudel, Jairo Cugliari, Yannig Goude, Georges Oppenheim,
Improved linear regression prediction by transfer learning, CSDA (2022)