Exposés à venir
Séminaire Commun - Viet Cuong Pham
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 7 juillet 2025 14:00-16:00 Lieu : Oratrice ou orateur : Viet Cuong Pham Résumé :Archives
TBA
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 30 juin 2025 15:30-16:30 Lieu : Oratrice ou orateur : Christian Ketterer Résumé :Valeurs propres conformes des opérateurs GJMS
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 16 juin 2025 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Emmanuel Humbert Résumé :Je présenterai un travail en commun avec R. Petrides (Paris) et B. Premoselli (Bruxelles). Les opérateurs GJMS sont des opérateurs convariants conformes qui généralisent l’opérateur de Yamabe. Nous étudions l’infimum (supremum) de la k-ème valeur propre positive (négative) parmi les métriques de volume 1 dans une classe conforme. Nous nous intéressons en particulier à la question de savoir si elles sont atteintes ou non. Nos travaux généralisent à toutes les valeurs propres et aux opérateurs GJMS d’ordre quelconque les travaux antérieurs qui se limitaient aux valeurs propres d’ordre 1 ou 2 et aux opérateurs d’ordre 2 ou 4.
Problèmes de Steklov biharmoniques et inégalités spectrales sur les formes différentielles
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 16 juin 2025 14:00-15:00 Lieu : Oratrice ou orateur : Rodolphe Abou Assali Résumé :Les problèmes spectraux classiques comme ceux de Dirichlet et de Neumann étudient les propriétés des fonctions propres et des valeurs propres. Leurs applications physiques concernent les modes de vibrations ainsi que la propagation de la chaleur et du son dans un domaine géométrique.
Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 2 juin 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 5 mai 2025 14:00-16:00 Lieu : Oratrice ou orateur : Matthieu Romagny Résumé :Géométrie birationnelle des groupes algébriques en caractéristique p>0
(Première partie) Cet exposé portera sur l’étude des familles G ⟶ S de groupes algébriques paramétrées par des variétés algébriques S de caractéristique p>0. Je commencerai l’exposé en expliquant quelques conséquences, pour l’étude des groupes algébriques, de l’existence du morphisme de Frobenius. La géométrie birationnelle est l’étude des différents prolongements possibles d’une famille fixée paramétrée par les points d’un ouvert dense U de S. J’expliquerai la signification de cette étude birationnelle pour la connaissance de toutes les familles. Dans ce contexte, les éclatements de Néron (aussi appelés dilatations) sont l’outil clé pour fabriquer de nouveaux prolongements. Je les présenterai ainsi que quelques développements très récents.
(Deuxième partie) Je me concentrerai ensuite sur le cas des groupes finis et illustrerai les problèmes spécifiques à ce cas. J’introduirai l’espace de modules des prolongements d’une famille fixée, qui est une ind-variété. Enfin j’énoncerai un résultat d’existence de dilatations dans ce cadre.
L’exposé comportera de nombreux exemples.
Il s’agit de résultats obtenus en collaboration avec A. Mayeux et T. RIcharz, ainsi que de travaux d’Alice Bouillet.
Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 28 avril 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Surfaces minimales dans R4
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 24 mars 2025 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Marina Ville Résumé :On a beaucoup étudié les surfaces minimales complètes de courbure totale finie de R3 mais beaucoup moins celles de R4. Je rappellerai les outils de base dans R4 et donnerai des exemples de plans minimaux. Puis je me concentrerai sur le cas des tores minimaux de courbure totale -8π avec un seul bout. Le tore carré de Chen-Gackstatter est l’unique exemple d’un tel tore dans R3 mais dans R4 on peut construire des exemples sur tous les tores rectangulaires. Je discuterai la stratégie de preuve et j’indiquerai les questions restant ouvertes. C’est un travail en collaboration avec Marc Soret.
Séminaire commun de géométrie - cohomologie galoisienne et conjecture de Serre II
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 3 mars 2025 14:00-16:00 Lieu : Oratrice ou orateur : Diego Izquierdo Résumé :Théorèmes de transfert pour la cohomologie galoisienne et conjecture de Serre II
La première partie de l’exposé sera consacrée à une présentation générale et accessible de la conjecture de Serre II, prédisant l’existence de points rationnels sur des torseurs sous certains groupes linéaires quand on travaille sur des corps de petite dimension cohomologique.
Dans la deuxième partie, je parlerai d’un travail récent avec Giancarlo Lucchini Arteche dans lequel on démontre notamment que la conjecture pour les corps de caractéristique nulle implique la conjecture pour les corps de caractéristique quelconque. Ce résultat repose notamment sur quelques théorèmes de transfert pour la dimension cohomologique des corps que j’énoncerai et expliquerai.
Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 3 février 2025 14:00-16:00 Lieu : Oratrice ou orateur : Stefan Kebekus Résumé :Extension of Differential Forms, Uniformization, Miyaoka-Yau inequalities and the topological characterization of certain klt varieties (with Daniel Greb and Thomas Peternell)
The first part of this overview talk begins with a non-technical overview of minimal model theory, explaining why any classification theory of complex-projective manifolds always needs to consider singular varieties. The talk describes the relevant singularities in brief, mentions methods that have been developed to study them and will ideally convey an idea what classification results one might hope to expect.
The second part describes some of the theory that has been developed over the last years and mentions some of the more concrete applications.