Upcoming presentations
The BNS sets of fundamental groups of complex algebraic varieties
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 25 November 2024 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Vasily Rogov Résumé :The BNS set of a finitely generated group $\Gamma$ is a certain canonical subset of the space of real additive characters on $\Gamma$. It is a subtle invariant of the group that naturally comes up in different questions of geometric and homological group theory. In the case when $\Gamma$ is the fundamental group of a compact Kähler manifold $X$, Thomas Delzant found a beautiful description of its BNS set in terms of holomorphic fibrations of $X$ over hyperbolic orbifold curves. Using it, he showed that if the fundamental group of a compact Kähler manifold is virtually solvable, it is in fact virtually nilpotent. I will explain the main ideas behind Delzant’s proof and how to generalise his theorems to the case when $X$ is a smooth complex quasi-projective variety. Time permitting, I will also discuss some applications and the case of quasi-Kähler manifolds.
Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 2 December 2024 14:00-16:00 Lieu : Oratrice ou orateur : Jean-René Chazottes Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 6 January 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 3 February 2025 14:00-16:00 Lieu : Oratrice ou orateur : Stefan Kebekus Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 3 March 2025 14:00-16:00 Lieu : Oratrice ou orateur : Hsueh-Yung Lin Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 28 April 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 5 May 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 2 June 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Past presentations
Séminaire commun de Géométrie - Colloquium Hugo Parlier
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 5 July 2022 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :https://dev-iecl.univ-lorraine.fr/events/titre-a-venir-99/
Moduli spaces of semistable sheaves
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 27 June 2022 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mihai Pavel Résumé :In this talk we present the construction of some moduli spaces of semistable sheaves over a smooth projective variety (over the field of complex numbers). We will use a notion of stability for pure coherent sheaves, which lies in-between Gieseker- and slope-stability. This is defined with respect to the Hilbert polynomial of the sheaf, truncated up to a certain degree. We call it l-(semi)stability, where l marks the level of truncation.
Before we proceed with the construction, we give a restriction theorem for l-(semi)stability. This applies in particular to Gieseker-semistable sheaves and generalizes the well-known restriction theorems of Mehta and Ramanathan. With this ingredient in place, we construct moduli spaces of l-semistable sheaves in higher dimensions. Our construction is based on ideas of Le Potier and Jun Li. In the torsion-free case, we recover a result of Huybrecths-Lehn over surfaces and of Greb-Toma in higher dimensions.
Formes réelles des adhérences d'orbites nilpotentes dans une algèbre de Lie semi-simple complexe
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 20 June 2022 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ronan Terpereau Résumé :Soit G un groupe algébrique complexe semi-simple, qui agit sur sont algèbre de Lie L(G) via l’action adjointe, et soit X l’adhérence d’une orbite nilpotente dans L(G). Dans cet exposé on va s’intéresser aux formes réelles de X, c’est-à-dire aux variétés algébriques réelles W munies d’une action d’un groupe algébrique réel F telles que F_\C soit isomorphe à G comme groupe algébrique et W_C soit isomorphe à X comme G-variété. Il s’agit d’un travail en commun avec Michael Bulois et Lucy Moser-Jauslin (arXiv:2106.04444).
Séminaire commun de Géométrie - REPORTE
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 13 June 2022 14:00-16:00 Lieu : Oratrice ou orateur : Olga Romaskevich Résumé :Séminaire reporté en 2022-2023. Date précisée ultérieurement.
Berndtsson-Lempert method for Ohsawa-Takegoshi extension theorem
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 30 May 2022 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Xu Wang Résumé :Un peu de topologie de l’espace des courbes hyperelliptiques munies de points de torsion
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 23 May 2022 13:00-14:00 Lieu : Lien du séminaire de géométrie complexe Oratrice ou orateur : Quentin Gendron Résumé :Les courbes hyperelliptiques sont des revêtements ramifiés de degré deux
de la droite projective. Dans le complément des points de ramification,
la préimage d’un point est constituée de deux points distincts notés p
et q. La différence p-q est de r-torsion s’il existe une fonction qui a
un zéro d’ordre r en p et un pôle d’ordre r en q (et aucune autre
singularité). La recherche de courbes hyperelliptiques définies sur les
rationnels avec r points de torsion est un problème important encore
largement ouvert.
Au contraire, dans le cas complexe on sait qu’il existe des surfaces
possédant une paire de r-torsion pour tout r suffisamment grand. Les
courbes munies de points de r-torsion forment des sous-espaces T_{g,r}
de l’espace des modules des courbes hyperelliptiques pointées. Ces
sous-espaces ne semblent pas avoir fait l’objet d’études approfondies.
Dans cet exposé, je souhaite montrer que leur topologie est
intéressante: à g fixé et pour r assez grand, l’espace T_{g,r} possède
environ g/2 composantes connexes.
J’expliquerai ce résultat grâce à des objets classiques, tels que
l’équation de Pell-Abel, les différentielles de troisième espèce ou les
tresses. Ce résultat a été obtenu conjointement dans un travail en
préparation avec Andrei Bogatyrev.
Un peu de topologie de l'espace des courbes hyperelliptiques munies de points de torsion
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 16 May 2022 15:30-16:30 Lieu : Lien du séminaire de géométrie complexe Oratrice ou orateur : Quentin Gendron Résumé :Les courbes hyperelliptiques sont des revêtements ramifiés de degré deux
de la droite projective. Dans le complément des points de ramification,
la préimage d’un point est constituée de deux points distincts notés p
et q. La différence p-q est de r-torsion s’il existe une fonction qui a
un zéro d’ordre r en p et un pôle d’ordre r en q (et aucune autre
singularité). La recherche de courbes hyperelliptiques définies sur les
rationnels avec r points de torsion est un problème important encore
largement ouvert.
Au contraire, dans le cas complexe on sait qu’il existe des surfaces
possédant une paire de r-torsion pour tout r suffisamment grand. Les
courbes munies de points de r-torsion forment des sous-espaces T_{g,r}
de l’espace des modules des courbes hyperelliptiques pointées. Ces
sous-espaces ne semblent pas avoir fait l’objet d’études approfondies.
Dans cet exposé, je souhaite montrer que leur topologie est
intéressante: à g fixé et pour r assez grand, l’espace T_{g,r} possède
environ g/2 composantes connexes.
J’expliquerai ce résultat grâce à des objets classiques, tels que
l’équation de Pell-Abel, les différentielles de troisième espèce ou les
tresses. Ce résultat a été obtenu conjointement dans un travail en
préparation avec Andrei Bogatyrev.
Variétés sphériques et conjecture YTD effective
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 9 May 2022 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Thibaut Delcroix Résumé :La conjecture de Yau-Tian-Donaldson en géométrie complexe relie l’existence de métriques de Kähler canoniques et la notion algébro-géométrique de K-stabilité. Une version forte a été prouvée pour les métriques de Kähler-Einstein sur les variétés de Fano il y a presque dix ans, et elle a considérablement amélioré notre compréhension de ce problème. Pour des métriques de Kähler canoniques plus générales, telles que les métriques de Kähler extrémales de Calabi, la conjecture YTD est toujours ouverte et, ce qui est peut-être plus important, son utilité pour prouver l’existence de métriques de Kähler extrémales est beaucoup moins claire. Je présenterai un raffinement possible de la conjecture YTD, inspiré par quelques indices dans la littérature, puis des résultats partiels dans cette direction dans le cadre des variétés sphériques.
Séminaire commun de Géométrie - Construction de surfaces minimales : approche variationnelle
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 2 May 2022 14:00-16:00 Lieu : Oratrice ou orateur : Laurent Mazet Résumé :Comme tous les “Séminaires communs de géométrie”, cet exposé est constitué de deux parties, la première de 14h à 14h45 pour un large public, la seconde de 15h15 à 16h pour un public plus intéressé. Entre les deux, une pause “thé-gâteaux” est offerte par l’équipe de géométrie
Première partie : Construction de surfaces minimales : approche variationnelle.
Résumé : Après avoir expliqué ce que sont les surfaces minimales, je présenterai quelques éléments de l’approche variationnelle qui peut être utilisée pour en construire.
Partie spécialisée : Rigidité des variétés riemanniennes contenant un équateur
résumé : Si une métrique sur la sphère S^2 à courbure comprise entre 0 et 1 possède une géodésique de longueur 2\pi, alors la courbure est constante égale à 1. Ce résultat de rigidité est dû à Calabi. En dimension 3 et sous les mêmes hypothèses de courbure sectionnelle, l’existence d’une sphère minimale d’aire 4\pi rigidifie aussi la métrique. Ce résultat a été obtenu dans un travail précédent avec H. Rosenberg. Dans cet exposé je présenterai comment ce travail peut être généralisé en codimension supérieure. Je donnerai aussi comme conséquence un théorème de rigidité pour le “width” de Simon-Smith.
Le tore "tue" les nombres de Chern et c'est bien le seul !
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 25 April 2022 14:00-15:00 Lieu : Salle Döblin Oratrice ou orateur : Benoit Claudon Résumé :Dans un travail en commun avec Patrick Graf et Henri Guenancia, nous nous sommes intéressés à un analogue singulier du théorème de Yau qui affirme qu’une variété kählérienne compacte dont les 2 premières classes de Chern sont nulles admet un revêtement étale qui est un tore. Pour généraliser ce type de résultat au cas klt, nous établissons une version singulière de l’inégalité de Bogomolov–Gieseker. Nous nous appuyons également sur le théorème de décomposition pour les espaces kählériens Ricci plat obtenu par Bakker–Guenancia–Lehn.