Complex geometry seminar

Upcoming presentations

Uniformization of log Fano pairs and equality in the Miyaoka--Yau inequality

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 17 November 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Louis Dailly Résumé :

At the beginning of the 20th century, it was known that any compact connected, simply connected Riemann surface is biholomorphic to the projective line.
Subsequently, several characterizations of projective spaces were established. For instance, Siu and Yau stated that projective spaces are the only Kähler manifolds with positive holomorphic bisectional curvature, and Mori proved that they are the only projective manifolds that have an ample tangent bundle. In a different direction, projective spaces are the only Kähler–Einstein manifolds with a positive constant satisfying the equality in the Miyaoka–Yau inequality. This result originating from uniformization theory was generalized in the singular setting by Greb, Kebekus, Peternell and Druel, Guenancia, Păun. More precisely, they characterize singular quotients of $\mathbb{P}^n$ by finite groups acting freely in codimension 1. The aim of this talk is to discuss a generalization of Greb–Kebekus–Peternell’s result in order to characterize quotients of $\mathbb{P}^n$ by any group action.


Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 5 January 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 February 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 March 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 4 May 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 1 June 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 6 July 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Abonnement iCal

Past presentations

L'invariance birationnelle des invariants de Bershadsky-Cecotti-Ooguri-Vafa

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 29 March 2021 15:30-16:30 Lieu : Salle de géométrie virtuelle Oratrice ou orateur : Lie Fu Résumé :

En utilisant la torsion analytique, Bershadsky, Cecotti, Ooguri et Vafa ont défini un invariant à valeurs réelles, appelé l’invariant de BCOV, pour les variétés de Calabi-Yau. L’invariant de BCOV est conjecturalement le miroir dans le B-modèle de l’invariant de Gromov-Witten de genre 1. Après une introduction à cet invariant, je vais présenter la démonstration récente de la conjecture de Fang-Lu-Yoshikawa, qui dit que deux variétés de Calabi-Yau birationnellement isomorphes ont le même invariant de BCOV. Si le temps le permet, j’expliquerai une généralisation de la définition des invariants de BCOV pour les variétés de Calabi-Yau singulières, ainsi que son invariance birationnelle.  Il s’agit d’un travail commun avec Yeping Zhang (arXiv: 2007.04835).


Intersection des courbes holomorphes et hypersurfaces génériques

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 22 March 2021 15:30-16:30 Lieu : Salle de géométrie virtuelle Oratrice ou orateur : Vu Duc Viet Résumé :

Dans un espace projectif complexe, le nombre des points (sans compter la multiplicité) de l’intersection d’une courbe algébrique et d’une hypersurface générique est le produit de leur degré. J’explique comment obtenir un énoncé analogue pour des courbes holomorphes entières.


Revêtements doubles et extensions de courbes canoniques

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 15 March 2021 15:30-16:30 Lieu : Salle de géométrie virtuelle Oratrice ou orateur : Thomas Dedieu Résumé :

Je donnerai une présentation détaillée des revêtements doubles des espaces projectifs, et en particulier des systèmes
linéaires $|kL|$ obtenus en tirant-en-arrière la classe d’équivalence linéaire des hypersurfaces de degré $k$ de l’espace projectif. J’examinerai avec une attention particulière les doubles plans sextiques, qui sont des surfaces K3 de genre 2, dans le but de décrire les extensions des courbes canoniques obtenues par le système $|kL|$. On rappelle qu’une extension de X plongée dans $P^N$ est $Y$ dans $P^{N+1}$ qui a $X$ comme section hyperplane.


Groupes algébriques agissant sur le plan projectif

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 8 March 2021 15:30-16:30 Lieu : Salle de géométrie virtuelle Oratrice ou orateur : Susanna Zimmermann Résumé :

Quels groupes algébriques agissent de façon birationnelle sur le plan projectif ? Après avoir regarder quelques exemples sur des corps divers, je vais expliquer comment attaquer la classification et la donner pour les groupes infinis.


Structure des classes de conjugaison dans les groupes de Coxeter

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 15 February 2021 15:30-16:30 Lieu : Salle de géométrie virtuelle Oratrice ou orateur : Timothée Marquis Résumé :

Dans cet exposé, je présenterai une solution définitive au problème de décrire les classes de conjugaison d’un groupe de Coxeter arbitraire en termes de permutations cycliques. Après avoir motivé le problème et passé en revue son histoire, j’expliquerai l’idée-clef, de nature géométrique, derrière la preuve de sa solution.


A characterization of non-compact ball quotient

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 8 February 2021 15:30-16:30 Lieu : Exposé en ligne Oratrice ou orateur : Résumé :

In 1988 Simpson proved a uniformization theorem which characterizes complex projective manifolds and quasi-projective curves whose universal coverings are complex unit balls. In this talk, I will give a necessary and sufficient condition for quasi-projective manifolds to be uniformized by complex unit balls, via stability of (logarithmic) Higgs bundles. This is based on a joint work with Benoit Cadorel.


Variétés à  fibré canonique trivial et fibré tangent fortement stable (d'après Greb-Guenancia-Kebekus)

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 14 December 2020 10:30-12:00 Lieu : Oratrice ou orateur : Damian Brotbek Résumé :

Dans cet exposé nous montrerons, en suivant l’article de Greb-Guenancia-Kebekus, qu’une variété projective klt à  fibré canonique numériquement trivial et dont le fibré tangent est fortement stable est, à  revêtement quasi étale près, soit une variété de CY soit une variété de Calabi-Yau soit une variété irréductible symplectique.


Wronskiens Généralisés et applications

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 7 December 2020 14:00-15:00 Lieu : Oratrice ou orateur : Antoine Étesse Résumé :

https://bul.univ-lorraine.fr/index.php/s/WDWrwG4sMHcHoso


Positivité de faisceaux tangents et classes de Chern orbifold

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 16 November 2020 15:30-16:30 Lieu : Oratrice ou orateur : Cécile Gachet Résumé :

Les variétés singulières à  canonique numériquement trivial ont
reçu un intérêt récent, notamment dans des travaux de Greb, Guénancia,
Kebekus, Druel, Höring, Peternell, Campana… qui aboutissent à  un
théorème de décomposition “à  la Beauville-Bogomolov” dans le cadre
singulier assez large (klt). Ces travaux participent également à 
comprendre la structure du faisceau tangent d’une variété singulière à 
canonique numériquement trivial; pour des variétés relativement peu
singulières (klt lisses en codimension 2, par exemple terminales),
Höring et Peternell établissent un lien entre la positivité
(pseudoeffectivité) du faisceau tangent à  une variété et la présence
d’une facteur abélien dans sa décomposition de Beauville-Bogomolov
singulière.

Dans cet exposé, je discuterai des outils permettant de traiter la
positivité d’un faisceau réflexif sur une variété à  singularités klt,
comme la seconde classe de Chern orbifold : c’est un bon cadre pour le
faisceau tangent d’une variété à  singularités klt. J’expliquerai comment
utiliser ces outils pour généraliser l’énoncé de Höring et Peternell à 
des variétés à  singularités klt, et en présenterai quelques autres
utilités.


Hyperbolicité et spécialité des produits symétriques

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 2 November 2020 14:00-15:00 Lieu : Oratrice ou orateur : Benoit Cadorel Résumé :

Un résultat d’Arapura et Archava montre qu’un produit symétrique d’une variété X de type général est aussi de type général, dès que X est de dimension au moins 2 ; il s’agit essentiellement de montrer que les singularités de ce produit sont canoniques. Ce résultat mène naturellement à  un certain nombre de questions : si X est hyperbolique, les produits symétriques le sont-ils aussi ? à  l’inverse, la propriété “spéciale” de F. Campana est-elle invariante par produit symétrique ?

Ces questions forment en général un problème plus difficile qu’il n’y parait ; on verra que sans des hypothèses supplémentaires sur la variété X, les réponses sont en général négatives. Cependant, sous certaines hypothèses de positivité naturelles sur X, on peut obtenir des contraintes fortes sur les courbes entières tracées sur les produits symétriques. Ceci permet notamment de construire de nombreux exemples de produits symétriques hyperboliques, en choisissant un X adéquat (par exemple une hypersurface ou intersection complète de haut degré, un quotient de domaine symétrique borné…)

Il s’agit d’un travail en commun avec F. Campana et E. Rousseau.