A venir
Les principaux séminaires de l’équipe ont lieu le lundi aux horaires suivants :
- Séminaire de géométrie différentielle : 14h-15h
- Séminaire de géométrie complexe : 15h30-16h30
Les responsables sont Damian Brotbeck pour la géométrie complexe et Benoit Daniel pour la géométrie différentielle.
Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 28 avril 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 5 mai 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d’évènement : Géométrie Date/heure : 2 juin 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Titre à préciser
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 16 juin 2025 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Emmanuel Humbert Résumé :Séminaire Commun – Viet Cuong Pham
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 7 juillet 2025 14:00-16:00 Lieu : Oratrice ou orateur : Viet Cuong Pham Résumé :Archives
Plans d'homologie et variétés réelles 4 dimensionelles.
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 21 novembre 2022 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Rodolfo Aguilar Résumé :Un plain d’homologie est une surface quasi-projective avec les mêmes groupes d’homologie que le plan affine complexe. Dans la première partie de l’exposé, on discutera certaines propriétés des plans d’homologie. Dans la deuxième partie, une nouvelle connexion avec les variétés lisses réelles de dimension quatre sera mentionée. Cette dernière partie est travail en commun avec Oğuz Şavk.
Surfaces minimales dans les variétés hyperboliques – Exposé 1
Catégorie d’évènement : Groupe de travail Géométrie Date/heure : 21 novembre 2022 14:00-15:00 Lieu : Oratrice ou orateur : Benoit Daniel Résumé :Ce groupe de travail étudie l’article de Calegari-Marques-Neves sur le nombre de surfaces minimales immergées dans une 3-variété hyperbolique.
Cet exposé sera consacré au résultat de Sacks-Uhlenbeck : étant donné une immersion incompressible d’une surface compacte dans une 3-variété compacte à courbure négative, alors il existe une immersion minimale dans la même classe d’homotopie.
Corps de Newton-Okounkov pour les courbes
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 21 novembre 2022 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lucie Devey Résumé :Le corps de Newton-Okounkov d’un diviseur gros D sur une varieté projective X est un convexe de R^n représentant le comportement asymptotique de l’ensemble des sections globales H^0(X,mD) quand m tend vers l’infini. Ainsi par exemple, le volume (dans R^n) du corps de Newton-Okounkov de D est n! fois le volume du diviseur D. Lehmann et Xiao ont défini des notions de volume pour les courbes duales de la notion de volume pour les diviseurs. En s’appuyant sur ce même papier, nous verrons qu’il est également possible de construire des corps de Newton-Okounkov pour les courbes de volume multiple du volume de la courbe initiale. Enfin, cette construction permet d’établir une nouvelle conjecture sur les corps de Newton-Okounkov.
La conjecture du volume de la TQFT de Teichmüller pour les nœuds twist
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 14 novembre 2022 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Fathi Ben Aribi Résumé :En 2011, Andersen et Kashaev ont défini une TQFT de dimension infinie à partir de la théorie de Teichmüller quantique. Cette TQFT de Teichmüller fournit un invariant des 3-variétés triangulées, et notamment des complémentaires de nœuds. La conjecture du volume associée affirme que la TQFT de Teichmüller du complémentaire d’un nœud hyperbolique contient le volume hyperbolique de ce nœud comme un certain coefficient asymptotique, et Andersen et Kashaev ont démontré cette conjecture pour les deux premiers nœuds hyperboliques.
Dans cet exposé, après un historique des invariants quantiques des nœuds et des conjectures du volume, je présenterai la construction de la TQFT de Teichmüller et comment nous avons démontré sa conjecture du volume pour la famille infinie des nœuds twist. Pour ce faire nous avons construit de nouvelles triangulations des complémentaires de ces nœuds, appelées triangulations géométriques car elles encodent la structure hyperbolique de la 3-variété sous-jacente.
Aucun prérequis en topologie quantique n’est nécessaire.
(en collaboration avec E. Piguet-Nakazawa et F. Guéritaud)
Pavages des surfaces par des triangles ou des carrés, différentielles sur les surfaces de Riemann et variation de structure de Hodge
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 14 novembre 2022 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Duc-Manh Nguyen Résumé :Dans cet exposé nous expliquons d’abord comment associer
des couples (surfaces de Riemann, différentielles méromorphes)
aux pavages d’une surface topologique donnée par des triangles ou des
carrés. Cela nous permettra de ramener le problème de déterminer
l’asymptotique du nombre de tels pavages à des calculs de volumes de
certains espaces de modules. Nous verrons enfin comment les outils de
la géométrie analytique et algébrique complexe, notamment la variation
de la structure de Hodge, nous permettent d’obtenir des valeurs
exactes de ces volumes dans certains cas.
Vacances – pas de séminaire
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 31 octobre 2022 00:00-00:00 Lieu : Oratrice ou orateur : Résumé :Compter les points rationnels sur les variétés avec un groupe fondamental grand
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 24 octobre 2022 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Marco Maculan Résumé :D’après Faltings une courbe projective lisse de genre au moins 2 définie sur un corps de nombres K n’a qu’un nombre fini de points K-rationnels. Les courbes elliptiques peuvent avoir une infinité de tels points, ainsi que la droite projective ; par contre, elles en ont « beaucoup moins » que la droite projective. Dans un travail en commun avec Y. Brunebarbe, basé sur un résultat récent de Ellenberg-Lawrence-Venkatesh, nous démontrons un résultat analogue en dimension supérieure : les variétés projectives avec groupe fondamental grand (au sens de Kollár-Campana) ont “beaucoup moins » de points que les variétés de Fano.
Immeubles des groupes linéaires sur un corps local II (d'après Goldman et Iwahori)
Catégorie d’évènement : Groupe de travail Géométrie Date/heure : 17 octobre 2022 10:15-12:15 Lieu : Salle Döblin Oratrice ou orateur : Alain Genestier Résumé :Multi-géodésiques aléatoires sur les surfaces hyperboliques en grand genre
Catégorie d’évènement : Séminaire de géométrie différentielle Date/heure : 10 octobre 2022 15:30-16:30 Lieu : Oratrice ou orateur : Mingkun Liu Résumé :Sur une surface hyperbolique, une géodésique fermée est dite simple si elle ne s’intersecte pas, et une multi-géodésique est une union disjointe des géodésiques fermées simples. Dans cet exposé, j’expliquerai comment tirer une multi-géodésique au hasard, et tenterai de répondre à la question suivante : à quoi ressemble-t-elle une multi-géodésique aléatoire sur une surface hyperbolique de grand genre ?
On verra qu’elle ressemble à une permutation aléatoire, et en particulier, sur une surface hyperbolique de genre très grand, les longueurs moyennes des trois composantes les plus longues d’une multi-géodésique aléatoire sont approximativement 75,8%, 17,1%, et 4,9%, respectivement, de la longueur totale. Il s’agit d’un travail en commun avec Vincent Delecroix.
Finite quotients of abelian varieties, étale in codimension 2, with a Calabi-Yau resolution
Catégorie d’évènement : Séminaire de géométrie complexe Date/heure : 10 octobre 2022 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Cécile Gachet Résumé :Let A be an abelian variety and G be a finite group acting on
A. If G acts freely in codimension 1, then the quotient A/G has
numerically trivial canonical divisor. A natural question is then
whether A/G admits a crepant resolution: under the additional assumption
that G acts freely in codimension 2, such a crepant resolution X would
be remarkable Calabi-Yau manifold (as it would have a nef and big
divisor D such that c_2(X)\cdot D^{n-2} = 0). Classifying such
quotients, étale in codimension 2, that admit a simply-connected crepant
resolution, was implemented by Oguiso in dimension 3 in the 90ies. We
extend his results to dimension 4 and 5, and give partial results in
arbitrary dimension.