Séminaires

Les principaux séminaires de l’équipe ont lieu le lundi aux horaires suivants :

  • Séminaire de géométrie différentielle : 14h-15h
  • Séminaire de géométrie complexe : 15h30-16h30

Les responsables sont Damian Brotbeck pour la géométrie complexe et Benoit Daniel pour la géométrie différentielle.


Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 6 janvier 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Classifying Fano 4-folds with a rational fibration onto a 3-fold

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 20 janvier 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Saverio Secci Résumé :

In this talk I will present a joint work with C. Casagrande, in which we study smooth complex Fano 4-folds with a rational fibration onto a 3-fold. After an introduction on the setting and motivation, I will discuss our main result: if X is Fano 4-fold with a rational fibration onto a 3-fold and it is not a product of surfaces, then the Picard number of X is at most 9, and the bound is sharp. Moreover, I will present a classification result in a special case within the setting above, and show new examples of Fano 4-folds with large Picard number.


Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 3 février 2025 14:00-16:00 Lieu : Oratrice ou orateur : Stefan Kebekus Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 3 mars 2025 14:00-16:00 Lieu : Oratrice ou orateur : Hsueh-Yung Lin Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 3 mars 2025 14:00-16:00 Lieu : Oratrice ou orateur : Diego Izquierdo Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 28 avril 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 5 mai 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 juin 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Archives

Séminaire commun de Géométrie - Colloquium Hugo Parlier

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 5 juillet 2022 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :

https://dev-iecl.univ-lorraine.fr/events/titre-a-venir-99/


Journées Nancéiennes de Géométrie

Catégorie d'évènement : Conférence Date/heure : 5 juillet 2022 - 6 juillet 2022 00:00-23:59 Lieu : Description

Programme des Journées Nancéiennes de Géométrie 2022

 

Les Journées Nancéiennes de Géométrie sont organisées par l’équipe de Géométrie de l’IECL depuis 2002. Elles rassemblent durant deux jours à la fois des experts internationaux de très haut niveau et de jeunes mathématiciens, autour de thèmes variés qui illustrent une des thématiques de recherche en Géométrie en Lorraine. Les orateurs sont choisis à la fois parmi les jeunes et les seniors du domaine.

Mardi 5 juillet : Amphi 7, Bâtiment VG jusqu’à 16h, Colloquium à  l’IECL à 16h30

  • 10h30-11h : accueil des participants (hall de l’amphi 8, Bâtiment VG, 1er étage)
  • 11h-12h : exposé 1 : Federica Fanoni : Isospectral hyperbolic surfaces of infinite genus
  • 12h-13h30 : déjeuner CROUS
  • 13h45-14h45 : exposé 2 : Alessandro Savo : Overdetermined PDE’s and isoparametric foliations
  • 15h-16h : exposé 3 : Vincent Pecastaing : Conformal groups of compact simply-connected Lorentzian manifolds
  • 16h-16h30 : pause (IECL, 2ème étage)
  • 16h30-17h30 : Colloquium : Hugo Parlier : Playing puzzles on translation surfaces
  • 20h : diner en centre ville

Mercredi 6/07 : Salle de Conférences de l’IECL

  • 9h30-10h30 : exposé 5 : Hugo Parlier : Ordering curves on hyperbolic surfaces
  • 10h30-11h : pause (IECL, 2ème étage)
  • 11h-12h : exposé 6 : Laura Monk : Small closed geodesics on a typical hyperbolic surface
  • 12h-13h30 : déjeuner CROUS
  • 13h45-14h45 : exposé 7 : Rabah SouamStable capillary hypersurfaces with planar boundaries

Résumé des exposés

Comité d’organisation :

Benoit Daniel, Nicolas Ginoux, Jean-François Grosjean, Georges Habib, Julien Maubon, Paola Schneider, Samuel Tapie

Soutiens :

Institut Elie Cartan de LorraineANR projet CCEMPôle AM2I de l’Université de Lorraine


Moduli spaces of semistable sheaves

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 27 juin 2022 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mihai Pavel Résumé :

In this talk we present the construction of some moduli spaces of semistable sheaves over a smooth projective variety (over the field of complex numbers). We will use a notion of stability for pure coherent sheaves, which lies in-between Gieseker- and slope-stability. This is defined with respect to the Hilbert polynomial of the sheaf, truncated up to a certain degree. We call it l-(semi)stability, where l marks the level of truncation.

Before we proceed with the construction, we give a restriction theorem for l-(semi)stability. This applies in particular to Gieseker-semistable sheaves and generalizes the well-known restriction theorems of Mehta and Ramanathan. With this ingredient in place, we construct moduli spaces of l-semistable sheaves in higher dimensions. Our construction is based on ideas of Le Potier and Jun Li. In the torsion-free case, we recover a result of Huybrecths-Lehn over surfaces and of Greb-Toma in higher dimensions.


Formes réelles des adhérences d'orbites nilpotentes dans une algèbre de Lie semi-simple complexe

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 20 juin 2022 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ronan Terpereau Résumé :

Soit G un groupe algébrique complexe semi-simple, qui agit sur sont algèbre de Lie L(G) via l’action adjointe, et soit X l’adhérence d’une orbite nilpotente dans L(G). Dans cet exposé on va s’intéresser aux formes réelles de X, c’est-à-dire aux variétés algébriques réelles W munies d’une action d’un groupe algébrique réel F telles que F_\C soit isomorphe à G comme groupe algébrique et W_C soit isomorphe à X comme G-variété. Il s’agit d’un travail en commun avec Michael Bulois et Lucy Moser-Jauslin (arXiv:2106.04444).


Séminaire commun de Géométrie - REPORTE

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 13 juin 2022 14:00-16:00 Lieu : Oratrice ou orateur : Olga Romaskevich Résumé :

Séminaire reporté en 2022-2023. Date précisée ultérieurement.


Laplaciens de Witten : petites valeurs propres et cohomologie persistente (d’après des travaux en collaboration avec Francis Nier et Claude Viterbo)

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 30 mai 2022 15:00-16:00 Lieu : Salle Döblin Oratrice ou orateur : Dorian Le Peutrec Résumé :
Sur une variété riemannienne, le laplacien de Witten est une déformation du laplacien de Hodge via une fonction de 
Morse f et un paramètre semi-classique h>0. Il fut introduit par Witten en 1982 pour démontrer analytiquement
les inégalités de Morse. Celles-ci se déduisent du fait que, pour tout p\in{0,\dots,d\}, le laplacien de Witten agissant
sur les p-formes admet, lorsque h \to 0 :
— m_p valeurs propres de taille O(e^{-C/h}), où m_p est le nombre de points critiques d’indice p de f,
— dont b_p valeurs propres nulles, où b_p est le p-ième nombre de Betti de la variété.
Dans cet exposé, nous nous intéresserons aux taux exponentiels en jeu dans l’expression de ces valeurs propres en
exhibant leurs liens avec la topologie du potentiel f. Nous montrerons plus précisément que ces taux correspondent
aux longueurs des codes-barres de l’homologie persistante de f. Nous commencerons par le cas p=0, i.e. du laplacien
de Witten agissant sur les fonctions, puis continuerons avec le cas des p-formes, d’abord pour des potentiels de Morse f
génériques, puis en relaxant l’hypothèse de Morse.

Berndtsson-Lempert method for Ohsawa-Takegoshi extension theorem

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 30 mai 2022 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Xu Wang Résumé :
This is a joint work with Tai. Nguyen. We shall show how to simplify the Berndtsson-Lempert method for the Ohsawa-Takegoshi extension theorem (OT). 
In particular, this allows us to generalize the Berndtsson-Lempert approach to manifolds with no non-trivial plurisubharmonic functions (for example, all compact complex manifolds). If time permits we will also discuss one of its applications on a Bergman kernel estimate related to the partial C^0 estimate.

Un peu de topologie de l’espace des courbes hyperelliptiques munies de points de torsion

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 23 mai 2022 13:00-14:00 Lieu : Lien du séminaire de géométrie complexe Oratrice ou orateur : Quentin Gendron Résumé :

Les courbes hyperelliptiques sont des revêtements ramifiés de degré deux
de la droite projective. Dans le complément des points de ramification,
la préimage d’un point est constituée de deux points distincts notés p
et q. La différence p-q est de r-torsion s’il existe une fonction qui a
un zéro d’ordre r en p et un pôle d’ordre r en q (et aucune autre
singularité). La recherche de courbes hyperelliptiques définies sur les
rationnels avec r points de torsion est un problème important encore
largement ouvert.

Au contraire, dans le cas complexe on sait qu’il existe des surfaces
possédant une paire de r-torsion pour tout r suffisamment grand. Les
courbes munies de points de r-torsion forment des sous-espaces T_{g,r}
de l’espace des modules des courbes hyperelliptiques pointées. Ces
sous-espaces ne semblent pas avoir fait l’objet d’études approfondies.
Dans cet exposé, je souhaite montrer que leur topologie est
intéressante: à g fixé et pour r assez grand, l’espace T_{g,r} possède
environ g/2 composantes connexes.
J’expliquerai ce résultat grâce à des objets classiques, tels que
l’équation de Pell-Abel, les différentielles de troisième espèce ou les
tresses. Ce résultat a été obtenu conjointement dans un travail en
préparation avec Andrei Bogatyrev.


Un peu de topologie de l'espace des courbes hyperelliptiques munies de points de torsion

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 16 mai 2022 15:30-16:30 Lieu : Lien du séminaire de géométrie complexe Oratrice ou orateur : Quentin Gendron Résumé :

Les courbes hyperelliptiques sont des revêtements ramifiés de degré deux
de la droite projective. Dans le complément des points de ramification,
la préimage d’un point est constituée de deux points distincts notés p
et q. La différence p-q est de r-torsion s’il existe une fonction qui a
un zéro d’ordre r en p et un pôle d’ordre r en q (et aucune autre
singularité). La recherche de courbes hyperelliptiques définies sur les
rationnels avec r points de torsion est un problème important encore
largement ouvert.

Au contraire, dans le cas complexe on sait qu’il existe des surfaces
possédant une paire de r-torsion pour tout r suffisamment grand. Les
courbes munies de points de r-torsion forment des sous-espaces T_{g,r}
de l’espace des modules des courbes hyperelliptiques pointées. Ces
sous-espaces ne semblent pas avoir fait l’objet d’études approfondies.
Dans cet exposé, je souhaite montrer que leur topologie est
intéressante: à g fixé et pour r assez grand, l’espace T_{g,r} possède
environ g/2 composantes connexes.
J’expliquerai ce résultat grâce à des objets classiques, tels que
l’équation de Pell-Abel, les différentielles de troisième espèce ou les
tresses. Ce résultat a été obtenu conjointement dans un travail en
préparation avec Andrei Bogatyrev.


Variétés sphériques et conjecture YTD effective

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 9 mai 2022 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Thibaut Delcroix Résumé :

La conjecture de Yau-Tian-Donaldson en géométrie complexe relie l’existence de métriques de Kähler canoniques et la notion algébro-géométrique de K-stabilité. Une version forte a été prouvée pour les métriques de Kähler-Einstein sur les variétés de Fano il y a presque dix ans, et elle a considérablement amélioré notre compréhension de ce problème. Pour des métriques de Kähler canoniques plus générales, telles que les métriques de Kähler extrémales de Calabi, la conjecture YTD est toujours ouverte et, ce qui est peut-être plus important, son utilité pour prouver l’existence de métriques de Kähler extrémales est beaucoup moins claire. Je présenterai un raffinement possible de la conjecture YTD, inspiré par quelques indices dans la littérature, puis des résultats partiels dans cette direction dans le cadre des variétés sphériques.


8 9 10 11 12 13 14 15 16 17 18 19