Colloquium

Présentation

Le colloquium lorrain de mathématiques est l’évènement mensuel à destination de tous les membres du laboratoire. Il a lieu sur les sites de Metz et Nancy.

Les organisateurs sont Renata Bunoiu et Hervé Oyono Oyono pour Metz et Youness Lamzouri pour Nancy.

L’exposé est donné par une oratrice ou un orateur reconnu pour ses qualités scientifiques et sa capacité à s’exprimer devant un large public de mathématicien(ne)s. Cet exposé a lieu généralement le mardi à 16h30, il est précédé d’un thé pour tous les membres du laboratoire à 16h et se poursuit par un dîner en ville pour ceux qui le souhaitent.

Exposés à venir

Archives

 Archives

Microlocal methods for chaotic dynamics

Catégorie d’évènement : Colloquium Date/heure : 7 novembre 2017 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :

Maciej Zworski (University of California, Berkeley)

zworski_paris

Maciej Zworski est un spécialiste des aspects mathématiques de la mécanique quantique. Il s’intéresse en particulier à la théorie de la diffusion (scattering) et à l’analyse micro-locale.

Résumé : 

Dynamical zeta functions were introduced by Selberg, Artin–Mazur, Smale and Ruelle. The Ruelle zeta function is defined by replacing primes in the Euler product of the Riemann zeta functions by exponentials of lengths of closed trajectories. Zeta functions, once meromorphically continued, contain information about the distribution of these lengths, the rate of decay to equilibrium and about other properties of the system. Conjectured by Smale in 1967, the meromorphy was proved in 2012 by Giulietti–Liverani–Pollicott for Anosov flows and by Dyatlov–Guillarmou for a class of Axiom A flows in 2014. I will explain a simple microlocal proof of the Anosov case given with Dyatlov in 2013: the key components are a microlocal framework introduced by Faure–Sjöstrand 2011, radial propagation results of Melrose 1994, a trace formula of Atiyah–Bott 1967 and Guillemin 1977 and some basic wave front set properties.


As a more recent application I will present a result obtained with Dyatlov: for compact surfaces with Anosov geodesic flows, Ruelle zeta function at 0 has a pole of multiplicity given by the Euler characteristic. In articular, the lengths spectrum (the set of the lenghts of closed geodesics) determines the genus.

 


Une variété hyperbolique qui fibre sur le cercle

Catégorie d’évènement : Colloquium Date/heure : 20 juin 2017 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :

Nicolas Bergeron

DSC_0039

Résumé : En 1979 T. Jorgensen surprend les géomètres en construisant une variété hyperbolique de dimension 3 qui fibre sur le cercle. Trente trois ans plus tard I. Agol, répondant positivement à une question de W. Thurston et en se basant sur des travaux de D. Wise, démontre que toute variété hyperbolique de dimension 3 possède en fait un revêtement fini qui fibre sur le cercle.

Dans cet exposé je commencerai par construire une exemple explicite de variété hyperbolique de dimension 3 qui fibre sur le cercle, en suivant une idée de Thurston. La construction est élémentaire et peut être rendue complètement visuelle. L’exposé sera ainsi constitué d’une succession de petits films, réalisés avec Jos Leys. En commentant ces films j’essaierai d’expliquer comment certaines des idées derrière cette construction d’une variété hyperbolique fibrée sont à la base des travaux d’Agol et Wise.
L’exposé sera précédé du thé du laboratoire à 16h30 et pour ceux qui le souhaitent, il y aura un repas en ville (participation de 20€ par personne). Si vous souhaitez participer à ce repas, merci de me prévenir avant vendredi 16 à midi.


Simulation moléculaire et mathématiques

Catégorie d’évènement : Colloquium Date/heure : 25 avril 2017 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :

Tony Lelièvre

TonyPhare

Résumé : La simulation moléculaire consiste à modéliser la matière à l’échelle des atomes. En utilisant ces modèles, on espère obtenir des simulations plus précises et plus prédictives, et ainsi avoir accès à une sorte de microscope numérique, permettant de scruter les phénomènes moléculaires à l’origine des propriétés macroscopiques. Les perspectives applicatives sont innombrables: prédiction des structures des protéines, conception de nouveaux médicaments ou de nouveaux matériaux, simulation de la dynamique des défauts dans un matériau, etc. La simulation moléculaire occupe aujourd’hui une place importante dans de nombreux domaines scientifiques (biologie, chimie, physique) au même titre que les développements théoriques et les expériences.

Malgré la formidable explosion de la puissance des ordinateurs, il reste difficile de simuler suffisamment d’atomes sur des temps suffisamment longs pour avoir accès à toutes les quantités d’intérêt. Les mathématiques jouent un rôle fondamental à la fois pour dériver rigoureusement des modèles réduits moins coûteux, et pour analyser et améliorer des algorithmes permettant de relever les défis posés par les différences d’échelles en temps et en espace entre le modèle atomique et notre monde macroscopique.

L’objectif de l’exposé sera de présenter les modèles utilisés en dynamique moléculaire ainsi que quelques questions mathématiques soulevées par leur simulation.

Biographie de l’auteur : Tony Lelièvre est chercheur en mathématiques appliquées, professeur à l’Ecole des Ponts ParisTech et à l’Ecole Polytechnique. Il est membre de l’équipe Matherials (INRIA Paris). Ses recherches portent principalement sur l’analyse mathématique de modèles pour les matériaux, et des méthodes numériques associées. Il coordonne le projet ERC MsMath sur la simulation moléculaire.


Shannon et la théorie de l’information

Catégorie d’évènement : Colloquium Date/heure : 28 mars 2017 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :

Olivier Rioul

Portraits_ParisTech2C-68 - carre

Nous fêtions en 2016 le centenaire de la naissance de Claude Shannon, un mathématicien et ingénieur américain considéré comme le “père de l’Âge de l’information”. Son nom ne vous dit peut-être pas grand chose : Hollywood a glorifié d’autres héros scientifiques comme Alan Turing ou John Nash. Shannon, lui, a eu une vie rangée, modeste… et surtout ludique : adepte du monocycle et du jonglage, il s’est amusé à construire des machines plus ou moins loufoques. Dans le même temps, il a fait des avancées théoriques décisives dans des domaines aussi divers que les circuits logiques, la cryptographie, l’intelligence artificielle, l’investissement boursier, le wearable computing… et surtout, la théorie de l’information. Son article fondateur de 1948 rassemble tellement d’avancées fondamentales et de coups de génie que Shannon est aujourd’hui le héros de milliers de chercheurs, loué presque comme une divinité. On peut dire, sans exagérer, que c’est le mathématicien dont les théorèmes ont rendu possible le monde du numérique que nous connaissons aujourd’hui.

Dans cet exposé on décrit ses contributions les plus marquantes : le paradigme de Shannon; les modèles probabilistes des données; l’unité logarithmique d’information; les limites de performances; l’entropie, l’entropie relative et la définition mathématique de l’information; la technique du codage aléatoire; la formule de capacité. On va jusqu’à présenter les idées des démonstrations des premier et second théorèmes de Shannon avec des moyens élémentaires. Si le temps le permet, on abordera une preuve récente de l’inégalité de la puissance entropique dont Shannon a eu l’intuition géniale.

Biographie de l’orateur :

Olivier Rioul (PhD, HDR) est ingénieur général du Corps des Mines, professeur à Télécom ParisTech et à l’Ecole Polytechnique. Ses activités de recherche en mathématiques appliquées sont consacrées à diverses applications parfois non conventionnelles de la théorie de l’information, comme les inégalités en statistiques, la sécurité physique des systèmes embarqués et la psychologie expérimentale dans les interactions homme-machine. Il enseigne la théorie de l’information dans plusieurs grandes écoles depuis vingt ans et a publié un livre qui est devenu une référence française du domaine et sera bientôt réédité.

Voir aussi les sites http://centenaire-shannon.cnrs.fr et http://shannon100.com.


Optimisation topologique de structures et fabrication additive

Catégorie d’évènement : Colloquium Date/heure : 7 février 2017 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :

Grégoire Allaire

Unknown

Grégoire Allaire est un spécialiste d’analyse numérique et d’optimisation.


Percolation des domaines nodaux aléatoires

Catégorie d’évènement : Colloquium Date/heure : 6 décembre 2016 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :

Damien Gayet

photo

Damien Gayet est un géomètre qui s’intéresse à des questions de sous-variétés ou de sous-ensembles aléatoires reliés aux fonctions propres de l’opérateur de Laplace sur une variété riemannienne.


Colloquium: Josselin Garnier

Catégorie d’évènement : Colloquium Date/heure : 29 novembre 2016 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :

Josselin Garnier

Unknown

Josselin Garnier est un spécialiste de la propagation des ondes dans des milieux aléatoires. Ces travaux le mène à des applications aux techniques d’imagerie.


Laurent Schwartz et le colloque d’analyse harmonique Nancy 1947

Catégorie d’évènement : Colloquium Date/heure : 14 juin 2016 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :

Anne-Sandrine Paumier

paumier

Le premier colloque international du CNRS en mathématiques organisé après la guerre est celui d’analyse harmonique de Nancy, en juin 1947. C’est lors de ce colloque que Schwartz va exposer pour la première fois ses distributions sphériques (aujourd’hui distributions tempérées). Cet article montre comment le colloque participe à la vie collective des mathématiques, et examine en quoi ce colloque en particulier témoigne du dynamisme des mathématiques à Nancy à cette date et est important pour les mathématiques et la carrière de Laurent Schwartz.


Panorama des processus SLE et dimension du "backbone"

Catégorie d’évènement : Colloquium Date/heure : 10 mai 2016 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :

Christophe Garban

photoWJe commencerai par un panorama des processus SLE. Ces processus ont été introduits en 1999 par Oded Schramm dans le but de décrire les interfaces qui apparaissent à la transition de phase de modèles bi-dimensionnels (comme par exemple la percolation ou le modèle d’Ising, modèles que j’introduirai au début de l’exposé). Ces processus peuvent être vus comme une généralisation probabiliste très naturelle d’un objet introduit dans les années 1920 par Karl Löwner pour répondre à la conjecture de Bieberbach. Après avoir motivé l’introduction de ces processus, j’expliquerai comment s’en servir pour identifier/calculer les dimensions fractales d’objets naturels (comme les grandes composantes connexes) qui apparaissent à la transition de phase des modèles bi- dimensionnels.


Modèles mathématiques de réaction-diffusion : anciens et nouveaux défis

Catégorie d’évènement : Colloquium Date/heure : 19 avril 2016 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :

Michel Pierre

michel_fev2016_50

Dans son article pionnier sur la morphogénèse animale et végétale publié en 1952, Alan Turing remarqua que la prise en compte de diffusion spatiale dans un processus réactif stable pouvait paradoxalement le déstabiliser, mais du même coup enrichir considérablement son comportement et contribuer à expliquer la variété des motifs spatiaux observés dans la nature. Il s’avère que l’ajout de diffusion dans les modèles mathématiques de réaction- diffusion correspondants peut même générer des explosions en temps fini et cette fois mettre en cause leur validité. Leur analyse soulève des questions d’existence globale en temps et de comportement asymptotique qui sont encore largement ouvertes aujourd’hui et pertinentes pour bien d’autres applications. Nous présenterons les résultats connus et les défis restants.


1 2 3 4 5 6 7 8 9 10 11 12